MMDVMHost-Private/DStarControl.cpp

1316 lines
36 KiB
C++

/*
* Copyright (C) 2015-2019 Jonathan Naylor, G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "DStarControl.h"
#include "Utils.h"
#include "Sync.h"
#include "Log.h"
#include "SMeter.h"
#include <cstdio>
#include <cassert>
#include <ctime>
#include <algorithm>
#include <functional>
const unsigned int MAX_SYNC_BIT_ERRORS = 2U;
const unsigned int FAST_DATA_BEEP_GRACE_FRAMES = 6U;
bool CallsignCompare(const std::string& arg, const unsigned char* my)
{
for (unsigned int i = 0U; i < (DSTAR_LONG_CALLSIGN_LENGTH - 1U); i++) {
if (arg.at(i) != my[i])
return false;
}
return true;
}
// #define DUMP_DSTAR
CDStarControl::CDStarControl(const std::string& callsign, const std::string& module, bool selfOnly, bool ackReply, unsigned int ackTime, DSTAR_ACK_MESSAGE ackMessage, bool errorReply, const std::vector<std::string>& blackList, const std::vector<std::string>& whiteList, CDStarNetwork* network, CDisplay* display, unsigned int timeout, bool duplex, bool remoteGateway, CRSSIInterpolator* rssiMapper) :
m_callsign(NULL),
m_gateway(NULL),
m_selfOnly(selfOnly),
m_ackReply(ackReply),
m_ackMessage(ackMessage),
m_errorReply(errorReply),
m_remoteGateway(remoteGateway),
m_blackList(blackList),
m_whiteList(whiteList),
m_network(network),
m_display(display),
m_duplex(duplex),
m_queue(5000U, "D-Star Control"),
m_rfHeader(),
m_netHeader(),
m_rfState(RS_RF_LISTENING),
m_netState(RS_NET_IDLE),
m_net(false),
m_slowData(),
m_rfN(0U),
m_netN(0U),
m_networkWatchdog(1000U, 0U, 1500U),
m_rfTimeoutTimer(1000U, timeout),
m_netTimeoutTimer(1000U, timeout),
m_packetTimer(1000U, 0U, 300U),
m_ackTimer(1000U, 0U, ackTime),
m_errTimer(1000U, 0U, ackTime),
m_interval(),
m_elapsed(),
m_rfFrames(0U),
m_netFrames(0U),
m_netLost(0U),
m_fec(),
m_rfBits(1U),
m_netBits(1U),
m_rfErrs(0U),
m_netErrs(0U),
m_lastFrame(NULL),
m_lastFrameValid(false),
m_rssiMapper(rssiMapper),
m_rssi(0U),
m_maxRSSI(0U),
m_minRSSI(0U),
m_aveRSSI(0U),
m_rssiCount(0U),
m_enabled(true),
m_fp(NULL),
m_rfVoiceSyncData(NULL),
m_rfVoiceSyncDataLen(0U),
m_netVoiceSyncData(NULL),
m_netVoiceSyncDataLen(0U),
m_rfNextFrameIsFastData(false),
m_netNextFrameIsFastData(false),
m_rfSkipDTMFBlankingFrames(0U),
m_netSkipDTMFBlankingFrames(0U)
{
assert(display != NULL);
assert(rssiMapper != NULL);
m_callsign = new unsigned char[DSTAR_LONG_CALLSIGN_LENGTH];
m_gateway = new unsigned char[DSTAR_LONG_CALLSIGN_LENGTH];
m_lastFrame = new unsigned char[DSTAR_FRAME_LENGTH_BYTES + 1U];
m_rfVoiceSyncData = new unsigned char[MODEM_DATA_LEN];
m_netVoiceSyncData = new unsigned char[MODEM_DATA_LEN];
std::string call = callsign;
call.resize(DSTAR_LONG_CALLSIGN_LENGTH - 1U, ' ');
std::string mod = module;
mod.resize(1U, ' ');
call.append(mod);
std::string gate = callsign;
gate.resize(DSTAR_LONG_CALLSIGN_LENGTH - 1U, ' ');
gate.append("G");
for (unsigned int i = 0U; i < DSTAR_LONG_CALLSIGN_LENGTH; i++) {
m_callsign[i] = call.at(i);
m_gateway[i] = gate.at(i);
}
m_interval.start();
}
CDStarControl::~CDStarControl()
{
delete[] m_callsign;
delete[] m_gateway;
delete[] m_lastFrame;
delete[] m_rfVoiceSyncData;
delete[] m_netVoiceSyncData;
}
unsigned int CDStarControl::maybeFixupVoiceFrame(
unsigned char* data,
unsigned int len,
unsigned int offset,
const char* log_prefix,
unsigned char n,
bool blank_dtmf,
unsigned char* voice_sync_data,
unsigned int& voice_sync_data_len,
bool& next_frame_is_fast_data,
unsigned int& skip_dtmf_blanking_frames
)
{
unsigned int errors = 0U;
unsigned int voice_sync_errors = 0U;
unsigned char mini_header = data[offset + 9U] ^ DSTAR_SCRAMBLER_BYTES[0U];
unsigned char mini_header_type = mini_header & DSTAR_SLOW_DATA_TYPE_MASK;
if (n == 0U) {
::memcpy(voice_sync_data, data, MODEM_DATA_LEN);
voice_sync_data_len = len;
} else if ((n % 2U != 0U) &&
((mini_header_type == DSTAR_SLOW_DATA_TYPE_FASTDATA01) ||
(mini_header_type == DSTAR_SLOW_DATA_TYPE_FASTDATA16))) {
next_frame_is_fast_data = true;
if (blank_dtmf)
skip_dtmf_blanking_frames = FAST_DATA_BEEP_GRACE_FRAMES;
if (n == 1U)
LogDebug("D-Star, %s fastdata sequence no. 0", log_prefix);
LogDebug("D-Star, %s fastdata sequence no. %2u", log_prefix, n);
} else if (next_frame_is_fast_data) {
next_frame_is_fast_data = false;
if (blank_dtmf)
skip_dtmf_blanking_frames = FAST_DATA_BEEP_GRACE_FRAMES;
LogDebug("D-Star, %s fastdata sequence no. %2u", log_prefix, n);
} else {
bool voice_sync_data_is_null_ambe_data = false;
bool data_is_null_ambe_data = false;
if ((n == 1U) && (::memcmp(voice_sync_data + offset, DSTAR_NULL_AMBE_DATA_BYTES_SCRAMBLED, DSTAR_VOICE_FRAME_LENGTH_BYTES) == 0))
voice_sync_data_is_null_ambe_data = true;
if (::memcmp(data + offset, DSTAR_NULL_AMBE_DATA_BYTES_SCRAMBLED, DSTAR_VOICE_FRAME_LENGTH_BYTES) == 0)
data_is_null_ambe_data = true;
if ((n == 1U) && !voice_sync_data_is_null_ambe_data)
voice_sync_errors += m_fec.regenerateDStar(voice_sync_data + offset);
if (!data_is_null_ambe_data)
errors += m_fec.regenerateDStar(data + offset);
if (blank_dtmf && skip_dtmf_blanking_frames > 0U) {
skip_dtmf_blanking_frames--;
} else if (blank_dtmf && skip_dtmf_blanking_frames == 0U) {
if ((n == 1U) && !voice_sync_data_is_null_ambe_data)
blankDTMF(voice_sync_data + offset);
if (!data_is_null_ambe_data)
blankDTMF(data + offset);
}
if (n == 1U) {
if (voice_sync_data_is_null_ambe_data)
LogDebug("D-Star, %s nullaudio sequence no. 0", log_prefix);
else
LogDebug("D-Star, %s audio sequence no. 0, errs: %2u/48 (%5.1f%%)", log_prefix, voice_sync_errors, float(voice_sync_errors) / 0.48F);
}
if (data_is_null_ambe_data)
LogDebug("D-Star, %s nullaudio sequence no. %2u", log_prefix, n);
else
LogDebug("D-Star, %s audio sequence no. %2u, errs: %2u/48 (%5.1f%%)", log_prefix, n, errors, float(errors) / 0.48F);
}
return voice_sync_errors + errors;
}
bool CDStarControl::writeModem(unsigned char *data, unsigned int len)
{
assert(data != NULL);
if (!m_enabled)
return false;
unsigned char type = data[0U];
if (type == TAG_LOST && m_rfState == RS_RF_AUDIO) {
unsigned char my1[DSTAR_LONG_CALLSIGN_LENGTH];
unsigned char my2[DSTAR_SHORT_CALLSIGN_LENGTH];
unsigned char your[DSTAR_LONG_CALLSIGN_LENGTH];
m_rfHeader.getMyCall1(my1);
m_rfHeader.getMyCall2(my2);
m_rfHeader.getYourCall(your);
if (m_rssi != 0U)
LogMessage("D-Star, transmission lost from %8.8s/%4.4s to %8.8s, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", my1, my2, your, float(m_rfFrames) / 50.0F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount);
else
LogMessage("D-Star, transmission lost from %8.8s/%4.4s to %8.8s, %.1f seconds, BER: %.1f%%", my1, my2, your, float(m_rfFrames) / 50.0F, float(m_rfErrs * 100U) / float(m_rfBits));
writeEndRF();
return false;
}
if (type == TAG_LOST && m_rfState == RS_RF_INVALID) {
m_rfState = RS_RF_LISTENING;
if (m_netState == RS_NET_IDLE) {
if (m_errorReply)
m_errTimer.start();
if (m_network != NULL)
m_network->reset();
}
return false;
}
if (type == TAG_LOST) {
m_rfState = RS_RF_LISTENING;
return false;
}
// Have we got RSSI bytes on the end of a D-Star header?
if (len == (DSTAR_HEADER_LENGTH_BYTES + 3U)) {
uint16_t raw = 0U;
raw |= (data[42U] << 8) & 0xFF00U;
raw |= (data[43U] << 0) & 0x00FFU;
// Convert the raw RSSI to dBm
int rssi = m_rssiMapper->interpolate(raw);
if (rssi != 0)
LogDebug("D-Star, raw RSSI: %u, reported RSSI: %d dBm", raw, rssi);
// RSSI is always reported as positive
m_rssi = (rssi >= 0) ? rssi : -rssi;
if (m_rssi > m_minRSSI)
m_minRSSI = m_rssi;
if (m_rssi < m_maxRSSI)
m_maxRSSI = m_rssi;
m_aveRSSI += m_rssi;
m_rssiCount++;
}
// Have we got RSSI bytes on the end of D-Star data?
if (len == (DSTAR_FRAME_LENGTH_BYTES + 3U)) {
uint16_t raw = 0U;
raw |= (data[13U] << 8) & 0xFF00U;
raw |= (data[14U] << 0) & 0x00FFU;
// Convert the raw RSSI to dBm
int rssi = m_rssiMapper->interpolate(raw);
if (rssi != 0)
LogDebug("D-Star, raw RSSI: %u, reported RSSI: %d dBm", raw, rssi);
// RSSI is always reported as positive
m_rssi = (rssi >= 0) ? rssi : -rssi;
if (m_rssi > m_minRSSI)
m_minRSSI = m_rssi;
if (m_rssi < m_maxRSSI)
m_maxRSSI = m_rssi;
m_aveRSSI += m_rssi;
m_rssiCount++;
}
if (type == TAG_HEADER) {
CDStarHeader header(data + 1U);
m_rfHeader = header;
unsigned char my1[DSTAR_LONG_CALLSIGN_LENGTH];
header.getMyCall1(my1);
// Is this a transmission destined for a repeater?
if (!header.isRepeater()) {
LogMessage("D-Star, non repeater RF header received from %8.8s", my1);
m_rfState = RS_RF_INVALID;
return false;
}
unsigned char callsign[DSTAR_LONG_CALLSIGN_LENGTH];
header.getRPTCall1(callsign);
// Is it for us?
if (::memcmp(callsign, m_callsign, DSTAR_LONG_CALLSIGN_LENGTH) != 0) {
LogMessage("D-Star, received RF header for wrong repeater (%8.8s) from %8.8s", callsign, my1);
m_rfState = RS_RF_INVALID;
return false;
}
if (m_selfOnly && ::memcmp(my1, m_callsign, DSTAR_LONG_CALLSIGN_LENGTH - 1U) != 0 && !(std::find_if(m_whiteList.begin(), m_whiteList.end(), std::bind(CallsignCompare, std::placeholders::_1, my1)) != m_whiteList.end())) {
LogMessage("D-Star, invalid access attempt from %8.8s", my1);
m_rfState = RS_RF_REJECTED;
return false;
}
if (!m_selfOnly && std::find_if(m_blackList.begin(), m_blackList.end(), std::bind(CallsignCompare, std::placeholders::_1, my1)) != m_blackList.end()) {
LogMessage("D-Star, invalid access attempt from %8.8s", my1);
m_rfState = RS_RF_REJECTED;
return false;
}
unsigned char gateway[DSTAR_LONG_CALLSIGN_LENGTH];
header.getRPTCall2(gateway);
unsigned char my2[DSTAR_SHORT_CALLSIGN_LENGTH];
header.getMyCall2(my2);
unsigned char your[DSTAR_LONG_CALLSIGN_LENGTH];
header.getYourCall(your);
m_net = ::memcmp(gateway, m_gateway, DSTAR_LONG_CALLSIGN_LENGTH) == 0;
// Only start the timeout if not already running
if (!m_rfTimeoutTimer.isRunning())
m_rfTimeoutTimer.start();
m_ackTimer.stop();
m_errTimer.stop();
m_rfBits = 1U;
m_rfErrs = 0U;
m_rfFrames = 1U;
m_rfN = 0U;
m_minRSSI = m_rssi;
m_maxRSSI = m_rssi;
m_aveRSSI = m_rssi;
m_rssiCount = 1U;
if (m_duplex) {
// Modify the header
header.setRepeater(false);
header.setRPTCall1(m_callsign);
header.setRPTCall2(m_callsign);
header.get(data + 1U);
writeQueueHeaderRF(data);
}
if (m_net) {
// Modify the header
header.setRepeater(false);
header.setRPTCall1(m_callsign);
header.setRPTCall2(m_gateway);
header.get(data + 1U);
writeNetworkHeaderRF(data);
}
m_rfState = RS_RF_AUDIO;
if (m_netState == RS_NET_IDLE) {
m_display->writeDStar((char*)my1, (char*)my2, (char*)your, "R", " ");
m_display->writeDStarRSSI(m_rssi);
}
LogMessage("D-Star, received RF header from %8.8s/%4.4s to %8.8s", my1, my2, your);
} else if (type == TAG_EOT) {
if (m_rfState == RS_RF_REJECTED) {
m_rfState = RS_RF_LISTENING;
} else if (m_rfState == RS_RF_INVALID) {
m_rfState = RS_RF_LISTENING;
if (m_netState == RS_NET_IDLE) {
if (m_errorReply)
m_errTimer.start();
if (m_network != NULL)
m_network->reset();
}
return false;
} else if (m_rfState == RS_RF_AUDIO) {
if (m_net)
writeNetworkDataRF(DSTAR_END_PATTERN_BYTES, 0U, true);
if (m_duplex)
writeQueueEOTRF();
m_rfNextFrameIsFastData = false;
m_rfSkipDTMFBlankingFrames = 0U;
unsigned char my1[DSTAR_LONG_CALLSIGN_LENGTH];
unsigned char my2[DSTAR_SHORT_CALLSIGN_LENGTH];
unsigned char your[DSTAR_LONG_CALLSIGN_LENGTH];
m_rfHeader.getMyCall1(my1);
m_rfHeader.getMyCall2(my2);
m_rfHeader.getYourCall(your);
if (m_rssi != 0U)
LogMessage("D-Star, received RF end of transmission from %8.8s/%4.4s to %8.8s, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", my1, my2, your, float(m_rfFrames) / 50.0F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount);
else
LogMessage("D-Star, received RF end of transmission from %8.8s/%4.4s to %8.8s, %.1f seconds, BER: %.1f%%", my1, my2, your, float(m_rfFrames) / 50.0F, float(m_rfErrs * 100U) / float(m_rfBits));
writeEndRF();
}
return false;
} else if (type == TAG_DATA) {
if (m_rfState == RS_RF_REJECTED) {
return false;
} else if (m_rfState == RS_RF_INVALID) {
return false;
} else if (m_rfState == RS_RF_LISTENING) {
// The sync is regenerated by the modem so can do exact match
if (::memcmp(data + 1U + DSTAR_VOICE_FRAME_LENGTH_BYTES, DSTAR_SYNC_BYTES, DSTAR_DATA_FRAME_LENGTH_BYTES) == 0) {
m_slowData.start();
m_rfState = RS_RF_LATE_ENTRY;
}
return false;
} else if (m_rfState == RS_RF_AUDIO) {
// The sync is regenerated by the modem so can do exact match
if (::memcmp(data + 1U + DSTAR_VOICE_FRAME_LENGTH_BYTES, DSTAR_SYNC_BYTES, DSTAR_DATA_FRAME_LENGTH_BYTES) == 0)
m_rfN = 0U;
// Regenerate the sync and send the RSSI data to the display
if (m_rfN == 0U) {
CSync::addDStarSync(data + 1U);
m_display->writeDStarRSSI(m_rssi);
}
unsigned int errors = 0U;
if (!m_rfHeader.isDataPacket()) {
errors = maybeFixupVoiceFrame(data, len, 1U, "RF", m_rfN, m_duplex, m_rfVoiceSyncData, m_rfVoiceSyncDataLen, m_rfNextFrameIsFastData, m_rfSkipDTMFBlankingFrames);
m_display->writeDStarBER(float(errors) / 0.48F);
m_rfErrs += errors;
}
m_rfBits += 48U;
m_rfFrames++;
if (m_net) {
if (m_rfN == 1U)
writeNetworkDataRF(m_rfVoiceSyncData, 0U, false);
if (m_rfN >= 1U)
writeNetworkDataRF(data, errors, false);
}
if (m_duplex) {
if (m_rfN == 1U)
writeQueueDataRF(m_rfVoiceSyncData);
if (m_rfN >= 1U)
writeQueueDataRF(data);
}
m_rfN = (m_rfN + 1U) % 21U;
} else if (m_rfState == RS_RF_LATE_ENTRY) {
// The sync is regenerated by the modem so can do exact match
if (::memcmp(data + 1U + DSTAR_VOICE_FRAME_LENGTH_BYTES, DSTAR_SYNC_BYTES, DSTAR_DATA_FRAME_LENGTH_BYTES) == 0) {
m_slowData.reset();
return false;
}
CDStarHeader* header = m_slowData.add(data + 1U);
if (header == NULL)
return false;
m_rfHeader = *header;
unsigned char my1[DSTAR_LONG_CALLSIGN_LENGTH];
header->getMyCall1(my1);
// Is this a transmission destined for a repeater?
if (!header->isRepeater()) {
LogMessage("D-Star, non repeater RF header received from %8.8s", my1);
m_rfState = RS_RF_INVALID;
delete header;
return false;
}
unsigned char callsign[DSTAR_LONG_CALLSIGN_LENGTH];
header->getRPTCall1(callsign);
// Is it for us?
if (::memcmp(callsign, m_callsign, DSTAR_LONG_CALLSIGN_LENGTH) != 0) {
LogMessage("D-Star, received RF header for wrong repeater (%8.8s) from %8.8s", callsign, my1);
m_rfState = RS_RF_INVALID;
delete header;
return false;
}
if (m_selfOnly && ::memcmp(my1, m_callsign, DSTAR_LONG_CALLSIGN_LENGTH - 1U) != 0 && !(std::find_if(m_whiteList.begin(), m_whiteList.end(), std::bind(CallsignCompare, std::placeholders::_1, my1)) != m_whiteList.end())) {
LogMessage("D-Star, invalid access attempt from %8.8s", my1);
m_rfState = RS_RF_REJECTED;
delete header;
return false;
}
if (!m_selfOnly && std::find_if(m_blackList.begin(), m_blackList.end(), std::bind(CallsignCompare, std::placeholders::_1, my1)) != m_blackList.end()) {
LogMessage("D-Star, invalid access attempt from %8.8s", my1);
m_rfState = RS_RF_REJECTED;
delete header;
return false;
}
unsigned char gateway[DSTAR_LONG_CALLSIGN_LENGTH];
header->getRPTCall2(gateway);
unsigned char my2[DSTAR_SHORT_CALLSIGN_LENGTH];
header->getMyCall2(my2);
unsigned char your[DSTAR_LONG_CALLSIGN_LENGTH];
header->getYourCall(your);
m_net = ::memcmp(gateway, m_gateway, DSTAR_LONG_CALLSIGN_LENGTH) == 0;
// Only reset the timeout if the timeout is not running
if (!m_rfTimeoutTimer.isRunning())
m_rfTimeoutTimer.start();
// Create a dummy start frame to replace the received frame
m_ackTimer.stop();
m_errTimer.stop();
m_rfBits = 1U;
m_rfErrs = 0U;
m_rfN = 0U;
m_rfFrames = 1U;
m_minRSSI = m_rssi;
m_maxRSSI = m_rssi;
m_aveRSSI = m_rssi;
m_rssiCount = 1U;
if (m_duplex) {
unsigned char start[DSTAR_HEADER_LENGTH_BYTES + 1U];
start[0U] = TAG_HEADER;
// Modify the header
header->setRepeater(false);
header->setRPTCall1(m_callsign);
header->setRPTCall2(m_callsign);
header->get(start + 1U);
writeQueueHeaderRF(start);
}
if (m_net) {
unsigned char start[DSTAR_HEADER_LENGTH_BYTES + 1U];
start[0U] = TAG_HEADER;
// Modify the header
header->setRepeater(false);
header->setRPTCall1(m_callsign);
header->setRPTCall2(m_gateway);
header->get(start + 1U);
writeNetworkHeaderRF(start);
}
delete header;
unsigned int errors = 0U;
if (!m_rfHeader.isDataPacket()) {
errors = maybeFixupVoiceFrame(data, len, 1U, "RF", m_rfN, m_duplex, m_rfVoiceSyncData, m_rfVoiceSyncDataLen, m_rfNextFrameIsFastData, m_rfSkipDTMFBlankingFrames);
m_rfErrs += errors;
}
m_rfBits += 48U;
if (m_net)
writeNetworkDataRF(data, errors, false);
if (m_duplex)
writeQueueDataRF(data);
m_rfState = RS_RF_AUDIO;
m_rfN = (m_rfN + 1U) % 21U;
if (m_netState == RS_NET_IDLE) {
m_display->writeDStar((char*)my1, (char*)my2, (char*)your, "R", " ");
m_display->writeDStarRSSI(m_rssi);
m_display->writeDStarBER(float(errors) / 0.48F);
}
LogMessage("D-Star, received RF late entry from %8.8s/%4.4s to %8.8s", my1, my2, your);
}
} else {
CUtils::dump("D-Star, unknown data from modem", data, DSTAR_FRAME_LENGTH_BYTES + 1U);
}
return true;
}
unsigned int CDStarControl::readModem(unsigned char* data)
{
assert(data != NULL);
if (m_queue.isEmpty())
return 0U;
unsigned char len = 0U;
m_queue.getData(&len, 1U);
m_queue.getData(data, len);
return len;
}
void CDStarControl::writeEndRF()
{
m_rfState = RS_RF_LISTENING;
if (m_netState == RS_NET_IDLE) {
m_display->clearDStar();
m_ackTimer.start();
if (m_network != NULL)
m_network->reset();
} else {
m_rfTimeoutTimer.stop();
}
}
void CDStarControl::writeEndNet()
{
m_netState = RS_NET_IDLE;
m_lastFrameValid = false;
m_display->clearDStar();
m_netTimeoutTimer.stop();
m_networkWatchdog.stop();
m_packetTimer.stop();
if (m_network != NULL)
m_network->reset();
#if defined(DUMP_DSTAR)
closeFile();
#endif
}
void CDStarControl::writeNetwork()
{
assert(m_network != NULL);
unsigned char data[DSTAR_HEADER_LENGTH_BYTES + 2U];
unsigned int length = m_network->read(data, DSTAR_HEADER_LENGTH_BYTES + 2U);
if (length == 0U)
return;
if (!m_enabled)
return;
if (m_rfState == RS_RF_AUDIO && m_netState == RS_NET_IDLE)
return;
m_networkWatchdog.start();
unsigned char type = data[0U];
if (type == TAG_HEADER) {
if (m_netState != RS_NET_IDLE)
return;
CDStarHeader header(data + 1U);
unsigned char my1[DSTAR_LONG_CALLSIGN_LENGTH];
header.getMyCall1(my1);
unsigned char my2[DSTAR_SHORT_CALLSIGN_LENGTH];
header.getMyCall2(my2);
unsigned char your[DSTAR_LONG_CALLSIGN_LENGTH];
header.getYourCall(your);
m_netHeader = header;
m_netTimeoutTimer.start();
m_packetTimer.start();
m_ackTimer.stop();
m_errTimer.stop();
m_lastFrameValid = false;
m_netFrames = 0U;
m_netLost = 0U;
m_netN = 20U;
m_netBits = 1U;
m_netErrs = 0U;
if (m_remoteGateway) {
header.setRepeater(true);
header.setRPTCall1(m_callsign);
header.setRPTCall2(m_callsign);
header.get(data + 1U);
}
writeQueueHeaderNet(data);
#if defined(DUMP_DSTAR)
openFile();
writeFile(data + 1U, length - 1U);
#endif
m_netState = RS_NET_AUDIO;
LINK_STATUS status = LS_NONE;
unsigned char reflector[DSTAR_LONG_CALLSIGN_LENGTH];
m_network->getStatus(status, reflector);
if (status == LS_LINKED_DEXTRA || status == LS_LINKED_DPLUS || status == LS_LINKED_DCS || status == LS_LINKED_CCS || status == LS_LINKED_LOOPBACK) {
m_display->writeDStar((char*)my1, (char*)my2, (char*)your, "N", (char*) reflector);
LogMessage("D-Star, received network header from %8.8s/%4.4s to %8.8s via %8.8s", my1, my2, your, reflector);
} else {
m_display->writeDStar((char*)my1, (char*)my2, (char*)your, "N", (char*) " ");
LogMessage("D-Star, received network header from %8.8s/%4.4s to %8.8s", my1, my2, your);
}
// Something just above here introduces a large delay forcing erroneous(?) insertion of silence packets.
// Starting the elapsed timer here instead of the commented out position above solves that.
m_elapsed.start();
} else if (type == TAG_EOT) {
if (m_netState != RS_NET_AUDIO)
return;
writeQueueEOTNet();
data[1U] = TAG_EOT;
#if defined(DUMP_DSTAR)
writeFile(data + 1U, length - 1U);
closeFile();
#endif
m_netNextFrameIsFastData = false;
m_netSkipDTMFBlankingFrames = 0U;
unsigned char my1[DSTAR_LONG_CALLSIGN_LENGTH];
unsigned char my2[DSTAR_SHORT_CALLSIGN_LENGTH];
unsigned char your[DSTAR_LONG_CALLSIGN_LENGTH];
m_netHeader.getMyCall1(my1);
m_netHeader.getMyCall2(my2);
m_netHeader.getYourCall(your);
// We've received the header and EOT haven't we?
m_netFrames += 2U;
LogMessage("D-Star, received network end of transmission from %8.8s/%4.4s to %8.8s, %.1f seconds, %u%% packet loss, BER: %.1f%%", my1, my2, your, float(m_netFrames) / 50.0F, (m_netLost * 100U) / m_netFrames, float(m_netErrs * 100U) / float(m_netBits));
writeEndNet();
} else if (type == TAG_DATA) {
if (m_netState != RS_NET_AUDIO)
return;
unsigned char n = data[1U];
data[1U] = TAG_DATA;
unsigned int errors = 0U;
if (!m_netHeader.isDataPacket())
errors = maybeFixupVoiceFrame(data, length, 2U, "Net", n, true, m_netVoiceSyncData, m_netVoiceSyncDataLen, m_netNextFrameIsFastData, m_netSkipDTMFBlankingFrames);
// Insert silence and reject if in the past
bool ret = insertSilence(data + 1U, n);
if (!ret)
return;
m_netErrs += errors;
m_netBits += 48U;
m_netN = n;
// Regenerate the sync
if (n == 0U)
CSync::addDStarSync(data + 2U);
m_packetTimer.start();
m_netFrames++;
#if defined(DUMP_DSTAR)
if (n == 1U)
writeFile(m_netVoiceSyncData + 1U, m_netVoiceSyncDataLen - 1U);
if (n >= 1U)
writeFile(data + 1U, length - 1U);
#endif
if (n == 1U)
writeQueueDataNet(m_netVoiceSyncData + 1U);
if (n >= 1U)
writeQueueDataNet(data + 1U);
} else {
CUtils::dump("D-Star, unknown data from network", data, DSTAR_FRAME_LENGTH_BYTES + 1U);
}
}
void CDStarControl::clock()
{
unsigned int ms = m_interval.elapsed();
m_interval.start();
if (m_network != NULL)
writeNetwork();
m_ackTimer.clock(ms);
if (m_ackTimer.isRunning() && m_ackTimer.hasExpired()) {
sendAck();
m_ackTimer.stop();
}
m_errTimer.clock(ms);
if (m_errTimer.isRunning() && m_errTimer.hasExpired()) {
sendError();
m_errTimer.stop();
}
m_rfTimeoutTimer.clock(ms);
m_netTimeoutTimer.clock(ms);
if (m_netState == RS_NET_AUDIO) {
m_networkWatchdog.clock(ms);
if (m_networkWatchdog.hasExpired()) {
// We're received the header haven't we?
m_netFrames += 1U;
LogMessage("D-Star, network watchdog has expired, %.1f seconds, %u%% packet loss, BER: %.1f%%", float(m_netFrames) / 50.0F, (m_netLost * 100U) / m_netFrames, float(m_netErrs * 100U) / float(m_netBits));
writeEndNet();
#if defined(DUMP_DSTAR)
closeFile();
#endif
}
}
// Only insert silence on audio data
if (m_netState == RS_NET_AUDIO) {
m_packetTimer.clock(ms);
if (m_packetTimer.isRunning() && m_packetTimer.hasExpired()) {
unsigned int elapsed = m_elapsed.elapsed();
unsigned int frames = elapsed / DSTAR_FRAME_TIME;
if (frames > m_netFrames) {
unsigned int count = frames - m_netFrames;
if (count > 15U) {
LogDebug("D-Star, lost audio for 300ms filling in, elapsed: %ums, expected: %u, received: %u", elapsed, frames, m_netFrames);
insertSilence(count - 2U);
}
}
m_packetTimer.start();
}
}
}
void CDStarControl::writeQueueHeaderRF(const unsigned char *data)
{
assert(data != NULL);
if (m_netState != RS_NET_IDLE)
return;
if (m_rfTimeoutTimer.isRunning() && m_rfTimeoutTimer.hasExpired())
return;
unsigned char len = DSTAR_HEADER_LENGTH_BYTES + 1U;
unsigned int space = m_queue.freeSpace();
if (space < (len + 1U)) {
LogError("D-Star, overflow in the D-Star RF queue");
return;
}
m_queue.addData(&len, 1U);
m_queue.addData(data, len);
}
void CDStarControl::writeQueueDataRF(const unsigned char *data)
{
assert(data != NULL);
if (m_netState != RS_NET_IDLE)
return;
if (m_rfTimeoutTimer.isRunning() && m_rfTimeoutTimer.hasExpired())
return;
unsigned char len = DSTAR_FRAME_LENGTH_BYTES + 1U;
unsigned int space = m_queue.freeSpace();
if (space < (len + 1U)) {
LogError("D-Star, overflow in the D-Star RF queue");
return;
}
m_queue.addData(&len, 1U);
m_queue.addData(data, len);
}
void CDStarControl::writeQueueEOTRF()
{
if (m_netState != RS_NET_IDLE)
return;
if (m_rfTimeoutTimer.isRunning() && m_rfTimeoutTimer.hasExpired())
return;
unsigned char len = 1U;
unsigned int space = m_queue.freeSpace();
if (space < (len + 1U)) {
LogError("D-Star, overflow in the D-Star RF queue");
return;
}
m_queue.addData(&len, 1U);
unsigned char data = TAG_EOT;
m_queue.addData(&data, len);
}
void CDStarControl::writeQueueHeaderNet(const unsigned char *data)
{
assert(data != NULL);
if (m_netTimeoutTimer.isRunning() && m_netTimeoutTimer.hasExpired())
return;
unsigned char len = DSTAR_HEADER_LENGTH_BYTES + 1U;
unsigned int space = m_queue.freeSpace();
if (space < (len + 1U)) {
LogError("D-Star, overflow in the D-Star RF queue");
return;
}
m_queue.addData(&len, 1U);
m_queue.addData(data, len);
}
void CDStarControl::writeQueueDataNet(const unsigned char *data)
{
assert(data != NULL);
if (m_netTimeoutTimer.isRunning() && m_netTimeoutTimer.hasExpired())
return;
unsigned char len = DSTAR_FRAME_LENGTH_BYTES + 1U;
unsigned int space = m_queue.freeSpace();
if (space < (len + 1U)) {
LogError("D-Star, overflow in the D-Star RF queue");
return;
}
m_queue.addData(&len, 1U);
m_queue.addData(data, len);
}
void CDStarControl::writeQueueEOTNet()
{
if (m_netTimeoutTimer.isRunning() && m_netTimeoutTimer.hasExpired())
return;
unsigned char len = 1U;
unsigned int space = m_queue.freeSpace();
if (space < (len + 1U)) {
LogError("D-Star, overflow in the D-Star RF queue");
return;
}
m_queue.addData(&len, 1U);
unsigned char data = TAG_EOT;
m_queue.addData(&data, len);
}
void CDStarControl::writeNetworkHeaderRF(const unsigned char* data)
{
assert(data != NULL);
if (m_network == NULL)
return;
// Don't send to the network if the timeout has expired
if (m_rfTimeoutTimer.isRunning() && m_rfTimeoutTimer.hasExpired())
return;
m_network->writeHeader(data + 1U, DSTAR_HEADER_LENGTH_BYTES, m_netState != RS_NET_IDLE);
}
void CDStarControl::writeNetworkDataRF(const unsigned char* data, unsigned int errors, bool end)
{
assert(data != NULL);
if (m_network == NULL)
return;
// Don't send to the network if the timeout has expired
if (m_rfTimeoutTimer.isRunning() && m_rfTimeoutTimer.hasExpired())
return;
m_network->writeData(data + 1U, DSTAR_FRAME_LENGTH_BYTES, errors, end, m_netState != RS_NET_IDLE);
}
bool CDStarControl::openFile()
{
if (m_fp != NULL)
return true;
time_t t;
::time(&t);
struct tm* tm = ::localtime(&t);
char name[100U];
::sprintf(name, "DStar_%04d%02d%02d_%02d%02d%02d.ambe", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec);
m_fp = ::fopen(name, "wb");
if (m_fp == NULL)
return false;
::fwrite("DSTAR", 1U, 4U, m_fp);
return true;
}
bool CDStarControl::writeFile(const unsigned char* data, unsigned int length)
{
if (m_fp == NULL)
return false;
::fwrite(data, 1U, length, m_fp);
return true;
}
void CDStarControl::closeFile()
{
if (m_fp != NULL) {
::fclose(m_fp);
m_fp = NULL;
}
}
bool CDStarControl::insertSilence(const unsigned char* data, unsigned char seqNo)
{
assert(data != NULL);
// Check to see if we have any spaces to fill?
unsigned int oldSeqNo = (m_netN + 1U) % 21U;
if (oldSeqNo == seqNo) {
// Just copy the data, nothing else to do here
::memcpy(m_lastFrame, data, DSTAR_FRAME_LENGTH_BYTES + 1U);
m_lastFrameValid = true;
return true;
}
unsigned int count;
if (seqNo > oldSeqNo)
count = seqNo - oldSeqNo;
else
count = (21U + seqNo) - oldSeqNo;
if (count >= 10U)
return false;
insertSilence(count);
::memcpy(m_lastFrame, data, DSTAR_FRAME_LENGTH_BYTES + 1U);
m_lastFrameValid = true;
return true;
}
void CDStarControl::insertSilence(unsigned int count)
{
unsigned char n = (m_netN + 1U) % 21U;
for (unsigned int i = 0U; i < count; i++) {
if (i < 3U && m_lastFrameValid) {
if (n == 0U) {
::memcpy(m_lastFrame + DSTAR_VOICE_FRAME_LENGTH_BYTES + 1U, DSTAR_NULL_SLOW_SYNC_BYTES, DSTAR_DATA_FRAME_LENGTH_BYTES);
writeQueueDataNet(m_lastFrame);
} else {
::memcpy(m_lastFrame + DSTAR_VOICE_FRAME_LENGTH_BYTES + 1U, DSTAR_NULL_SLOW_DATA_BYTES, DSTAR_DATA_FRAME_LENGTH_BYTES);
writeQueueDataNet(m_lastFrame);
}
} else {
m_lastFrameValid = false;
if (n == 0U)
writeQueueDataNet(DSTAR_NULL_FRAME_SYNC_BYTES);
else
writeQueueDataNet(DSTAR_NULL_FRAME_DATA_BYTES);
}
m_netN = n;
m_netFrames++;
m_netLost++;
n = (n + 1U) % 21U;
}
}
void CDStarControl::blankDTMF(unsigned char* data) const
{
assert(data != NULL);
// DTMF begins with these byte values
if ((data[0] & DSTAR_DTMF_MASK[0]) == DSTAR_DTMF_SIG[0] && (data[1] & DSTAR_DTMF_MASK[1]) == DSTAR_DTMF_SIG[1] &&
(data[2] & DSTAR_DTMF_MASK[2]) == DSTAR_DTMF_SIG[2] && (data[3] & DSTAR_DTMF_MASK[3]) == DSTAR_DTMF_SIG[3] &&
(data[4] & DSTAR_DTMF_MASK[4]) == DSTAR_DTMF_SIG[4] && (data[5] & DSTAR_DTMF_MASK[5]) == DSTAR_DTMF_SIG[5] &&
(data[6] & DSTAR_DTMF_MASK[6]) == DSTAR_DTMF_SIG[6] && (data[7] & DSTAR_DTMF_MASK[7]) == DSTAR_DTMF_SIG[7] &&
(data[8] & DSTAR_DTMF_MASK[8]) == DSTAR_DTMF_SIG[8])
::memcpy(data, DSTAR_NULL_AMBE_DATA_BYTES, DSTAR_VOICE_FRAME_LENGTH_BYTES);
}
void CDStarControl::sendAck()
{
m_rfTimeoutTimer.stop();
if (!m_ackReply)
return;
unsigned char user[DSTAR_LONG_CALLSIGN_LENGTH];
m_rfHeader.getMyCall1(user);
CDStarHeader header;
header.setUnavailable(true);
header.setMyCall1(m_callsign);
header.setYourCall(user);
header.setRPTCall1(m_gateway);
header.setRPTCall2(m_callsign);
unsigned char data[DSTAR_HEADER_LENGTH_BYTES + 1U];
header.get(data + 1U);
data[0U] = TAG_HEADER;
writeQueueHeaderRF(data);
writeQueueDataRF(DSTAR_NULL_FRAME_SYNC_BYTES);
LINK_STATUS status = LS_NONE;
unsigned char reflector[DSTAR_LONG_CALLSIGN_LENGTH];
if (m_network != NULL)
m_network->getStatus(status, reflector);
char text[40U];
if (m_ackMessage == DSTAR_ACK_RSSI && m_rssi != 0) {
if (status == LS_LINKED_DEXTRA || status == LS_LINKED_DPLUS || status == LS_LINKED_DCS || status == LS_LINKED_CCS || status == LS_LINKED_LOOPBACK) {
CUtils::removeChar(reflector, ' ');//remove space from reflector so all nicely fits onto 20 chars in case rssi < 99dBm
::sprintf(text, "%-8.8s %.1f%% -%udBm ", reflector, float(m_rfErrs * 100U) / float(m_rfBits), m_aveRSSI / m_rssiCount);
} else {
::sprintf(text, "BER:%.1f%% -%udBm ", float(m_rfErrs * 100U) / float(m_rfBits), m_aveRSSI / m_rssiCount);
}
} else if (m_ackMessage == DSTAR_ACK_SMETER && m_rssi != 0) {
unsigned int signal, plus;
char signalText[10U];
CSMeter::getSignal(m_aveRSSI / m_rssiCount, signal, plus);
if (plus != 0U)
::sprintf(signalText, "S%u+%02u", signal, plus);
else
::sprintf(signalText, "S%u", signal);
if (status == LS_LINKED_DEXTRA || status == LS_LINKED_DPLUS || status == LS_LINKED_DCS || status == LS_LINKED_CCS || status == LS_LINKED_LOOPBACK)
::sprintf(text, "%-8.8s %.1f%% %s ", reflector, float(m_rfErrs * 100U) / float(m_rfBits), signalText);
else
::sprintf(text, "BER:%.1f%% %s ", float(m_rfErrs * 100U) / float(m_rfBits), signalText);
} else {
if (status == LS_LINKED_DEXTRA || status == LS_LINKED_DPLUS || status == LS_LINKED_DCS || status == LS_LINKED_CCS || status == LS_LINKED_LOOPBACK)
::sprintf(text, "%-8.8s BER: %.1f%% ", reflector, float(m_rfErrs * 100U) / float(m_rfBits));
else
::sprintf(text, "BER: %.1f%% ", float(m_rfErrs * 100U) / float(m_rfBits));
}
m_slowData.setText(text);
::memcpy(data, DSTAR_NULL_FRAME_DATA_BYTES, DSTAR_FRAME_LENGTH_BYTES + 1U);
for (unsigned int i = 0U; i < 19U; i++) {
m_slowData.get(data + 1U + DSTAR_VOICE_FRAME_LENGTH_BYTES);
writeQueueDataRF(data);
}
writeQueueEOTRF();
}
void CDStarControl::sendError()
{
unsigned char user[DSTAR_LONG_CALLSIGN_LENGTH];
m_rfHeader.getMyCall1(user);
CDStarHeader header;
header.setUnavailable(true);
header.setMyCall1(m_callsign);
header.setYourCall(user);
header.setRPTCall1(m_callsign);
header.setRPTCall2(m_callsign);
unsigned char data[DSTAR_HEADER_LENGTH_BYTES + 1U];
header.get(data + 1U);
data[0U] = TAG_HEADER;
writeQueueHeaderRF(data);
writeQueueDataRF(DSTAR_NULL_FRAME_SYNC_BYTES);
LINK_STATUS status = LS_NONE;
unsigned char reflector[DSTAR_LONG_CALLSIGN_LENGTH];
if (m_network != NULL)
m_network->getStatus(status, reflector);
char text[40U];
if (m_ackMessage == DSTAR_ACK_RSSI && m_rssi != 0) {
if (status == LS_LINKED_DEXTRA || status == LS_LINKED_DPLUS || status == LS_LINKED_DCS || status == LS_LINKED_CCS || status == LS_LINKED_LOOPBACK) {
CUtils::removeChar(reflector, ' ');//remove space from reflector so all nicely fits onto 20 chars in case rssi < 99dBm
::sprintf(text, "%-8.8s %.1f%% -%udBm ", reflector, float(m_rfErrs * 100U) / float(m_rfBits), m_aveRSSI / m_rssiCount);
} else {
::sprintf(text, "BER:%.1f%% -%udBm ", float(m_rfErrs * 100U) / float(m_rfBits), m_aveRSSI / m_rssiCount);
}
} else if (m_ackMessage == DSTAR_ACK_SMETER && m_rssi != 0) {
unsigned int signal, plus;
char signalText[10U];
CSMeter::getSignal(m_aveRSSI / m_rssiCount, signal, plus);
if (plus != 0U)
::sprintf(signalText, "S%u+%02u", signal, plus);
else
::sprintf(signalText, "S%u", signal);
if (status == LS_LINKED_DEXTRA || status == LS_LINKED_DPLUS || status == LS_LINKED_DCS || status == LS_LINKED_CCS || status == LS_LINKED_LOOPBACK)
::sprintf(text, "%-8.8s %.1f%% %s ", reflector, float(m_rfErrs * 100U) / float(m_rfBits), signalText);
else
::sprintf(text, "BER:%.1f%% %s ", float(m_rfErrs * 100U) / float(m_rfBits), signalText);
} else {
if (status == LS_LINKED_DEXTRA || status == LS_LINKED_DPLUS || status == LS_LINKED_DCS || status == LS_LINKED_CCS || status == LS_LINKED_LOOPBACK)
::sprintf(text, "%-8.8s BER: %.1f%% ", reflector, float(m_rfErrs * 100U) / float(m_rfBits));
else
::sprintf(text, "BER: %.1f%% ", float(m_rfErrs * 100U) / float(m_rfBits));
}
m_slowData.setText(text);
::memcpy(data, DSTAR_NULL_FRAME_DATA_BYTES, DSTAR_FRAME_LENGTH_BYTES + 1U);
for (unsigned int i = 0U; i < 19U; i++) {
m_slowData.get(data + 1U + DSTAR_VOICE_FRAME_LENGTH_BYTES);
writeQueueDataRF(data);
}
writeQueueEOTRF();
}
bool CDStarControl::isBusy() const
{
return m_rfState != RS_RF_LISTENING || m_netState != RS_NET_IDLE;
}
void CDStarControl::enable(bool enabled)
{
if (!enabled && m_enabled) {
m_queue.clear();
// Reset the RF section
m_rfState = RS_RF_LISTENING;
m_rfTimeoutTimer.stop();
// Reset the networking section
m_netState = RS_NET_IDLE;
m_lastFrameValid = false;
m_netTimeoutTimer.stop();
m_networkWatchdog.stop();
m_packetTimer.stop();
}
m_enabled = enabled;
}