MMDVMHost-Private/YSFPayload.cpp
2020-09-24 13:53:17 +01:00

1027 lines
23 KiB
C++

/*
* Copyright (C) 2016,2017,2020 Jonathan Naylor, G4KLX
* Copyright (C) 2016 Mathias Weyland, HB9FRV
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "YSFConvolution.h"
#include "YSFPayload.h"
#include "YSFDefines.h"
#include "Utils.h"
#include "CRC.h"
#include "Log.h"
#include <cstdio>
#include <cassert>
#include <cstring>
#include <cstdint>
const unsigned int INTERLEAVE_TABLE_9_20[] = {
0U, 40U, 80U, 120U, 160U, 200U, 240U, 280U, 320U,
2U, 42U, 82U, 122U, 162U, 202U, 242U, 282U, 322U,
4U, 44U, 84U, 124U, 164U, 204U, 244U, 284U, 324U,
6U, 46U, 86U, 126U, 166U, 206U, 246U, 286U, 326U,
8U, 48U, 88U, 128U, 168U, 208U, 248U, 288U, 328U,
10U, 50U, 90U, 130U, 170U, 210U, 250U, 290U, 330U,
12U, 52U, 92U, 132U, 172U, 212U, 252U, 292U, 332U,
14U, 54U, 94U, 134U, 174U, 214U, 254U, 294U, 334U,
16U, 56U, 96U, 136U, 176U, 216U, 256U, 296U, 336U,
18U, 58U, 98U, 138U, 178U, 218U, 258U, 298U, 338U,
20U, 60U, 100U, 140U, 180U, 220U, 260U, 300U, 340U,
22U, 62U, 102U, 142U, 182U, 222U, 262U, 302U, 342U,
24U, 64U, 104U, 144U, 184U, 224U, 264U, 304U, 344U,
26U, 66U, 106U, 146U, 186U, 226U, 266U, 306U, 346U,
28U, 68U, 108U, 148U, 188U, 228U, 268U, 308U, 348U,
30U, 70U, 110U, 150U, 190U, 230U, 270U, 310U, 350U,
32U, 72U, 112U, 152U, 192U, 232U, 272U, 312U, 352U,
34U, 74U, 114U, 154U, 194U, 234U, 274U, 314U, 354U,
36U, 76U, 116U, 156U, 196U, 236U, 276U, 316U, 356U,
38U, 78U, 118U, 158U, 198U, 238U, 278U, 318U, 358U};
const unsigned int INTERLEAVE_TABLE_5_20[] = {
0U, 40U, 80U, 120U, 160U,
2U, 42U, 82U, 122U, 162U,
4U, 44U, 84U, 124U, 164U,
6U, 46U, 86U, 126U, 166U,
8U, 48U, 88U, 128U, 168U,
10U, 50U, 90U, 130U, 170U,
12U, 52U, 92U, 132U, 172U,
14U, 54U, 94U, 134U, 174U,
16U, 56U, 96U, 136U, 176U,
18U, 58U, 98U, 138U, 178U,
20U, 60U, 100U, 140U, 180U,
22U, 62U, 102U, 142U, 182U,
24U, 64U, 104U, 144U, 184U,
26U, 66U, 106U, 146U, 186U,
28U, 68U, 108U, 148U, 188U,
30U, 70U, 110U, 150U, 190U,
32U, 72U, 112U, 152U, 192U,
34U, 74U, 114U, 154U, 194U,
36U, 76U, 116U, 156U, 196U,
38U, 78U, 118U, 158U, 198U};
// This one differs from the others in that it interleaves bits and not dibits
const unsigned int INTERLEAVE_TABLE_26_4[] = {
0U, 4U, 8U, 12U, 16U, 20U, 24U, 28U, 32U, 36U, 40U, 44U, 48U, 52U, 56U, 60U, 64U, 68U, 72U, 76U, 80U, 84U, 88U, 92U, 96U, 100U,
1U, 5U, 9U, 13U, 17U, 21U, 25U, 29U, 33U, 37U, 41U, 45U, 49U, 53U, 57U, 61U, 65U, 69U, 73U, 77U, 81U, 85U, 89U, 93U, 97U, 101U,
2U, 6U, 10U, 14U, 18U, 22U, 26U, 30U, 34U, 38U, 42U, 46U, 50U, 54U, 58U, 62U, 66U, 70U, 74U, 78U, 82U, 86U, 90U, 94U, 98U, 102U,
3U, 7U, 11U, 15U, 19U, 23U, 27U, 31U, 35U, 39U, 43U, 47U, 51U, 55U, 59U, 63U, 67U, 71U, 75U, 79U, 83U, 87U, 91U, 95U, 99U, 103U};
const unsigned char WHITENING_DATA[] = {0x93U, 0xD7U, 0x51U, 0x21U, 0x9CU, 0x2FU, 0x6CU, 0xD0U, 0xEFU, 0x0FU,
0xF8U, 0x3DU, 0xF1U, 0x73U, 0x20U, 0x94U, 0xEDU, 0x1EU, 0x7CU, 0xD8U};
const unsigned char BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
#define WRITE_BIT1(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7])
#define READ_BIT1(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7])
CYSFPayload::CYSFPayload() :
m_uplink(NULL),
m_downlink(NULL),
m_source(NULL),
m_dest(NULL),
m_fec()
{
}
CYSFPayload::~CYSFPayload()
{
delete[] m_uplink;
delete[] m_downlink;
delete[] m_source;
delete[] m_dest;
}
bool CYSFPayload::processHeaderData(unsigned char* data)
{
assert(data != NULL);
data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES;
unsigned char dch[45U];
unsigned char* p1 = data;
unsigned char* p2 = dch;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p2, p1, 9U);
p1 += 18U; p2 += 9U;
}
CYSFConvolution conv;
conv.start();
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U;
n++;
uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U;
conv.decode(s0, s1);
}
unsigned char output[23U];
conv.chainback(output, 176U);
bool valid1 = CCRC::checkCCITT162(output, 22U);
if (valid1) {
for (unsigned int i = 0U; i < 20U; i++)
output[i] ^= WHITENING_DATA[i];
if (m_dest == NULL) {
m_dest = new unsigned char[YSF_CALLSIGN_LENGTH];
::memcpy(m_dest, output + 0U, YSF_CALLSIGN_LENGTH);
}
if (m_source == NULL) {
m_source = new unsigned char[YSF_CALLSIGN_LENGTH];
::memcpy(m_source, output + YSF_CALLSIGN_LENGTH, YSF_CALLSIGN_LENGTH);
}
for (unsigned int i = 0U; i < 20U; i++)
output[i] ^= WHITENING_DATA[i];
CCRC::addCCITT162(output, 22U);
output[22U] = 0x00U;
unsigned char convolved[45U];
conv.encode(output, convolved, 180U);
unsigned char bytes[45U];
unsigned int j = 0U;
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
bool s0 = READ_BIT1(convolved, j) != 0U;
j++;
bool s1 = READ_BIT1(convolved, j) != 0U;
j++;
WRITE_BIT1(bytes, n, s0);
n++;
WRITE_BIT1(bytes, n, s1);
}
p1 = data;
p2 = bytes;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p1, p2, 9U);
p1 += 18U; p2 += 9U;
}
}
p1 = data + 9U;
p2 = dch;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p2, p1, 9U);
p1 += 18U; p2 += 9U;
}
conv.start();
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U;
n++;
uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U;
conv.decode(s0, s1);
}
conv.chainback(output, 176U);
bool valid2 = CCRC::checkCCITT162(output, 22U);
if (valid2) {
for (unsigned int i = 0U; i < 20U; i++)
output[i] ^= WHITENING_DATA[i];
if (m_downlink != NULL)
::memcpy(output + 0U, m_downlink, YSF_CALLSIGN_LENGTH);
if (m_uplink != NULL)
::memcpy(output + YSF_CALLSIGN_LENGTH, m_uplink, YSF_CALLSIGN_LENGTH);
for (unsigned int i = 0U; i < 20U; i++)
output[i] ^= WHITENING_DATA[i];
CCRC::addCCITT162(output, 22U);
output[22U] = 0x00U;
unsigned char convolved[45U];
conv.encode(output, convolved, 180U);
unsigned char bytes[45U];
unsigned int j = 0U;
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
bool s0 = READ_BIT1(convolved, j) != 0U;
j++;
bool s1 = READ_BIT1(convolved, j) != 0U;
j++;
WRITE_BIT1(bytes, n, s0);
n++;
WRITE_BIT1(bytes, n, s1);
}
p1 = data + 9U;
p2 = bytes;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p1, p2, 9U);
p1 += 18U; p2 += 9U;
}
}
return valid1;
}
unsigned int CYSFPayload::processVDMode1Audio(unsigned char* data)
{
assert(data != NULL);
data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES;
// Regenerate the AMBE FEC
unsigned int errors = 0U;
errors += m_fec.regenerateYSFDN(data + 9U);
errors += m_fec.regenerateYSFDN(data + 27U);
errors += m_fec.regenerateYSFDN(data + 45U);
errors += m_fec.regenerateYSFDN(data + 63U);
errors += m_fec.regenerateYSFDN(data + 81U);
return errors;
}
bool CYSFPayload::processVDMode1Data(unsigned char* data, unsigned char fn, bool gateway)
{
assert(data != NULL);
data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES;
unsigned char dch[45U];
unsigned char* p1 = data;
unsigned char* p2 = dch;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p2, p1, 9U);
p1 += 18U; p2 += 9U;
}
CYSFConvolution conv;
conv.start();
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U;
n++;
uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U;
conv.decode(s0, s1);
}
unsigned char output[23U];
conv.chainback(output, 176U);
bool ret = CCRC::checkCCITT162(output, 22U);
if (ret) {
for (unsigned int i = 0U; i < 20U; i++)
output[i] ^= WHITENING_DATA[i];
switch (fn) {
case 0U:
if (m_dest == NULL) {
m_dest = new unsigned char[YSF_CALLSIGN_LENGTH];
::memcpy(m_dest, output + 0U, YSF_CALLSIGN_LENGTH);
}
if (m_source == NULL) {
m_source = new unsigned char[YSF_CALLSIGN_LENGTH];
::memcpy(m_source, output + YSF_CALLSIGN_LENGTH, YSF_CALLSIGN_LENGTH);
}
break;
case 1U:
if (m_downlink != NULL && !gateway)
::memcpy(output + 0U, m_downlink, YSF_CALLSIGN_LENGTH);
if (m_uplink != NULL && !gateway)
::memcpy(output + YSF_CALLSIGN_LENGTH, m_uplink, YSF_CALLSIGN_LENGTH);
break;
case 3U:
// CUtils::dump(1U, "V/D Mode 1 Data, DT1", output, 20U);
break;
case 4U:
// CUtils::dump(1U, "V/D Mode 1 Data, DT2", output, 20U);
break;
case 5U:
// CUtils::dump(1U, "V/D Mode 1 Data, DT3", output, 20U);
break;
case 6U:
// CUtils::dump(1U, "V/D Mode 1 Data, DT4", output, 20U);
break;
case 7U:
// CUtils::dump(1U, "V/D Mode 1 Data, DT5", output, 20U);
break;
default:
break;
}
for (unsigned int i = 0U; i < 20U; i++)
output[i] ^= WHITENING_DATA[i];
CCRC::addCCITT162(output, 22U);
output[22U] = 0x00U;
unsigned char convolved[45U];
conv.encode(output, convolved, 180U);
unsigned char bytes[45U];
unsigned int j = 0U;
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
bool s0 = READ_BIT1(convolved, j) != 0U;
j++;
bool s1 = READ_BIT1(convolved, j) != 0U;
j++;
WRITE_BIT1(bytes, n, s0);
n++;
WRITE_BIT1(bytes, n, s1);
}
p1 = data;
p2 = bytes;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p1, p2, 9U);
p1 += 18U; p2 += 9U;
}
}
return ret && (fn == 0U);
}
unsigned int CYSFPayload::processVDMode2Audio(unsigned char* data)
{
assert(data != NULL);
data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES;
unsigned int errors = 0U;
unsigned int offset = 40U; // DCH(0)
// We have a total of 5 VCH sections, iterate through each
for (unsigned int j = 0U; j < 5U; j++, offset += 144U) {
unsigned int errs = 0U;
unsigned char vch[13U];
// Deinterleave
for (unsigned int i = 0U; i < 104U; i++) {
unsigned int n = INTERLEAVE_TABLE_26_4[i];
bool s = READ_BIT1(data, offset + n);
WRITE_BIT1(vch, i, s);
}
// "Un-whiten" (descramble)
for (unsigned int i = 0U; i < 13U; i++)
vch[i] ^= WHITENING_DATA[i];
// errors += READ_BIT1(vch, 103); // Padding bit must be zero but apparently it is not...
for (unsigned int i = 0U; i < 81U; i += 3) {
uint8_t vote = 0U;
vote += READ_BIT1(vch, i + 0U) ? 1U : 0U;
vote += READ_BIT1(vch, i + 1U) ? 1U : 0U;
vote += READ_BIT1(vch, i + 2U) ? 1U : 0U;
switch (vote) {
case 1U: // 1 0 0, or 0 1 0, or 0 0 1, convert to 0 0 0
WRITE_BIT1(vch, i + 0U, false);
WRITE_BIT1(vch, i + 1U, false);
WRITE_BIT1(vch, i + 2U, false);
errs++;
break;
case 2U: // 1 1 0, or 0 1 1, or 1 0 1, convert to 1 1 1
WRITE_BIT1(vch, i + 0U, true);
WRITE_BIT1(vch, i + 1U, true);
WRITE_BIT1(vch, i + 2U, true);
errs++;
break;
default: // 0U (0 0 0), or 3U (1 1 1), no errors
break;
}
}
// Reconstruct only if we have bit errors.
if (errs > 0U) {
// Accumulate the total number of errors
errors += errs;
// Scramble
for (unsigned int i = 0U; i < 13U; i++)
vch[i] ^= WHITENING_DATA[i];
// Interleave
for (unsigned int i = 0U; i < 104U; i++) {
unsigned int n = INTERLEAVE_TABLE_26_4[i];
bool s = READ_BIT1(vch, i);
WRITE_BIT1(data, offset + n, s);
}
}
}
// "errors" is the number of triplets that were recognized to be corrupted
// and that were corrected. There are 27 of those per VCH and 5 VCH per CC,
// yielding a total of 27*5 = 135. I believe the expected value of this
// error distribution to be Bin(1;3,BER)+Bin(2;3,BER) which entails 75% for
// BER = 0.5.
return errors;
}
bool CYSFPayload::processVDMode2Data(unsigned char* data, unsigned char fn, bool gateway)
{
assert(data != NULL);
data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES;
unsigned char dch[25U];
unsigned char* p1 = data;
unsigned char* p2 = dch;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p2, p1, 5U);
p1 += 18U; p2 += 5U;
}
CYSFConvolution conv;
conv.start();
for (unsigned int i = 0U; i < 100U; i++) {
unsigned int n = INTERLEAVE_TABLE_5_20[i];
uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U;
n++;
uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U;
conv.decode(s0, s1);
}
unsigned char output[13U];
conv.chainback(output, 96U);
bool ret = CCRC::checkCCITT162(output, 12U);
if (ret) {
for (unsigned int i = 0U; i < 10U; i++)
output[i] ^= WHITENING_DATA[i];
switch (fn) {
case 0U:
if (m_dest == NULL) {
m_dest = new unsigned char[YSF_CALLSIGN_LENGTH];
::memcpy(m_dest, output, YSF_CALLSIGN_LENGTH);
}
break;
case 1U:
if (m_source == NULL) {
m_source = new unsigned char[YSF_CALLSIGN_LENGTH];
::memcpy(m_source, output, YSF_CALLSIGN_LENGTH);
}
break;
case 2U:
if (m_downlink != NULL && !gateway)
::memcpy(output, m_downlink, YSF_CALLSIGN_LENGTH);
break;
case 3U:
if (m_uplink != NULL && !gateway)
::memcpy(output, m_uplink, YSF_CALLSIGN_LENGTH);
break;
case 6U:
// CUtils::dump(1U, "V/D Mode 2 Data, DT1", output, YSF_CALLSIGN_LENGTH);
break;
case 7U:
// CUtils::dump(1U, "V/D Mode 2 Data, DT2", output, YSF_CALLSIGN_LENGTH);
break;
default:
break;
}
for (unsigned int i = 0U; i < 10U; i++)
output[i] ^= WHITENING_DATA[i];
CCRC::addCCITT162(output, 12U);
output[12U] = 0x00U;
unsigned char convolved[25U];
conv.encode(output, convolved, 100U);
unsigned char bytes[25U];
unsigned int j = 0U;
for (unsigned int i = 0U; i < 100U; i++) {
unsigned int n = INTERLEAVE_TABLE_5_20[i];
bool s0 = READ_BIT1(convolved, j) != 0U;
j++;
bool s1 = READ_BIT1(convolved, j) != 0U;
j++;
WRITE_BIT1(bytes, n, s0);
n++;
WRITE_BIT1(bytes, n, s1);
}
p1 = data;
p2 = bytes;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p1, p2, 5U);
p1 += 18U; p2 += 5U;
}
}
return ret && (fn == 0U || fn == 1U);
}
bool CYSFPayload::processDataFRModeData(unsigned char* data, unsigned char fn, bool gateway)
{
assert(data != NULL);
data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES;
unsigned char dch[45U];
unsigned char* p1 = data;
unsigned char* p2 = dch;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p2, p1, 9U);
p1 += 18U; p2 += 9U;
}
CYSFConvolution conv;
conv.start();
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U;
n++;
uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U;
conv.decode(s0, s1);
}
unsigned char output[23U];
conv.chainback(output, 176U);
bool ret1 = CCRC::checkCCITT162(output, 22U);
if (ret1) {
for (unsigned int i = 0U; i < 20U; i++)
output[i] ^= WHITENING_DATA[i];
switch (fn) {
case 0U:
// CUtils::dump(1U, "FR Mode Data, CSD1", output, 20U);
if (m_dest == NULL) {
m_dest = new unsigned char[YSF_CALLSIGN_LENGTH];
::memcpy(m_dest, output + 0U, YSF_CALLSIGN_LENGTH);
}
if (m_source == NULL) {
m_source = new unsigned char[YSF_CALLSIGN_LENGTH];
::memcpy(m_source, output + YSF_CALLSIGN_LENGTH, YSF_CALLSIGN_LENGTH);
}
break;
case 1U:
// CUtils::dump(1U, "FR Mode Data, CSD3", output, 20U);
break;
case 2U:
// CUtils::dump(1U, "FR Mode Data, DT2", output, 20U);
break;
case 3U:
// CUtils::dump(1U, "FR Mode Data, DT4", output, 20U);
break;
case 4U:
// CUtils::dump(1U, "FR Mode Data, DT6", output, 20U);
break;
case 5U:
// CUtils::dump(1U, "FR Mode Data, DT8", output, 20U);
break;
case 6U:
// CUtils::dump(1U, "FR Mode Data, DT10", output, 20U);
break;
case 7U:
// CUtils::dump(1U, "FR Mode Data, DT12", output, 20U);
break;
default:
break;
}
for (unsigned int i = 0U; i < 20U; i++)
output[i] ^= WHITENING_DATA[i];
CCRC::addCCITT162(output, 22U);
output[22U] = 0x00U;
unsigned char convolved[45U];
conv.encode(output, convolved, 180U);
unsigned char bytes[45U];
unsigned int j = 0U;
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
bool s0 = READ_BIT1(convolved, j) != 0U;
j++;
bool s1 = READ_BIT1(convolved, j) != 0U;
j++;
WRITE_BIT1(bytes, n, s0);
n++;
WRITE_BIT1(bytes, n, s1);
}
p1 = data;
p2 = bytes;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p1, p2, 9U);
p1 += 18U; p2 += 9U;
}
}
p1 = data + 9U;
p2 = dch;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p2, p1, 9U);
p1 += 18U; p2 += 9U;
}
conv.start();
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U;
n++;
uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U;
conv.decode(s0, s1);
}
conv.chainback(output, 176U);
bool ret2 = CCRC::checkCCITT162(output, 22U);
if (ret2) {
for (unsigned int i = 0U; i < 20U; i++)
output[i] ^= WHITENING_DATA[i];
switch (fn) {
case 0U:
// CUtils::dump(1U, "FR Mode Data, CSD2", output, 20U);
if (m_downlink != NULL && !gateway)
::memcpy(output + 0U, m_downlink, YSF_CALLSIGN_LENGTH);
if (m_uplink != NULL && !gateway)
::memcpy(output + YSF_CALLSIGN_LENGTH, m_uplink, YSF_CALLSIGN_LENGTH);
break;
case 1U:
// CUtils::dump(1U, "FR Mode Data, DT1", output, 20U);
break;
case 2U:
// CUtils::dump(1U, "FR Mode Data, DT3", output, 20U);
break;
case 3U:
// CUtils::dump(1U, "FR Mode Data, DT5", output, 20U);
break;
case 4U:
// CUtils::dump(1U, "FR Mode Data, DT7", output, 20U);
break;
case 5U:
// CUtils::dump(1U, "FR Mode Data, DT9", output, 20U);
break;
case 6U:
// CUtils::dump(1U, "FR Mode Data, DT11", output, 20U);
break;
case 7U:
// CUtils::dump(1U, "FR Mode Data, DT13", output, 20U);
break;
default:
break;
}
for (unsigned int i = 0U; i < 20U; i++)
output[i] ^= WHITENING_DATA[i];
CCRC::addCCITT162(output, 22U);
output[22U] = 0x00U;
unsigned char convolved[45U];
conv.encode(output, convolved, 180U);
unsigned char bytes[45U];
unsigned int j = 0U;
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
bool s0 = READ_BIT1(convolved, j) != 0U;
j++;
bool s1 = READ_BIT1(convolved, j) != 0U;
j++;
WRITE_BIT1(bytes, n, s0);
n++;
WRITE_BIT1(bytes, n, s1);
}
p1 = data + 9U;
p2 = bytes;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p1, p2, 9U);
p1 += 18U; p2 += 9U;
}
}
return ret1 && (fn == 0U);
}
unsigned int CYSFPayload::processVoiceFRModeAudio2(unsigned char* data)
{
assert(data != NULL);
data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES;
// Regenerate the IMBE FEC
unsigned int errors = 0U;
errors += m_fec.regenerateIMBE(data + 54U);
errors += m_fec.regenerateIMBE(data + 72U);
return errors;
}
unsigned int CYSFPayload::processVoiceFRModeAudio5(unsigned char* data)
{
assert(data != NULL);
data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES;
// Regenerate the IMBE FEC
unsigned int errors = 0U;
errors += m_fec.regenerateIMBE(data + 0U);
errors += m_fec.regenerateIMBE(data + 18U);
errors += m_fec.regenerateIMBE(data + 36U);
errors += m_fec.regenerateIMBE(data + 54U);
errors += m_fec.regenerateIMBE(data + 72U);
return errors;
}
bool CYSFPayload::processVoiceFRModeData(unsigned char* data)
{
assert(data != NULL);
data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES;
unsigned char dch[45U];
::memcpy(dch, data, 45U);
CYSFConvolution conv;
conv.start();
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U;
n++;
uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U;
conv.decode(s0, s1);
}
unsigned char output[23U];
conv.chainback(output, 176U);
bool ret = CCRC::checkCCITT162(output, 22U);
if (ret) {
CCRC::addCCITT162(output, 22U);
output[22U] = 0x00U;
unsigned char convolved[45U];
conv.encode(output, convolved, 180U);
unsigned char bytes[45U];
unsigned int j = 0U;
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
bool s0 = READ_BIT1(convolved, j) != 0U;
j++;
bool s1 = READ_BIT1(convolved, j) != 0U;
j++;
WRITE_BIT1(bytes, n, s0);
n++;
WRITE_BIT1(bytes, n, s1);
}
::memcpy(data, bytes, 45U);
}
return ret;
}
void CYSFPayload::writeHeader(unsigned char* data, const unsigned char* csd1, const unsigned char* csd2)
{
assert(data != NULL);
assert(csd1 != NULL);
assert(csd2 != NULL);
writeDataFRModeData1(csd1, data);
writeDataFRModeData2(csd2, data);
}
void CYSFPayload::writeDataFRModeData1(const unsigned char* dt, unsigned char* data)
{
assert(dt != NULL);
assert(data != NULL);
data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES;
unsigned char output[25U];
for (unsigned int i = 0U; i < 20U; i++)
output[i] = dt[i] ^ WHITENING_DATA[i];
CCRC::addCCITT162(output, 22U);
output[22U] = 0x00U;
unsigned char convolved[45U];
CYSFConvolution conv;
conv.encode(output, convolved, 180U);
unsigned char bytes[45U];
unsigned int j = 0U;
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
bool s0 = READ_BIT1(convolved, j) != 0U;
j++;
bool s1 = READ_BIT1(convolved, j) != 0U;
j++;
WRITE_BIT1(bytes, n, s0);
n++;
WRITE_BIT1(bytes, n, s1);
}
unsigned char* p1 = data;
unsigned char* p2 = bytes;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p1, p2, 9U);
p1 += 18U; p2 += 9U;
}
}
void CYSFPayload::writeDataFRModeData2(const unsigned char* dt, unsigned char* data)
{
assert(dt != NULL);
assert(data != NULL);
data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES;
unsigned char output[25U];
for (unsigned int i = 0U; i < 20U; i++)
output[i] = dt[i] ^ WHITENING_DATA[i];
CCRC::addCCITT162(output, 22U);
output[22U] = 0x00U;
unsigned char convolved[45U];
CYSFConvolution conv;
conv.encode(output, convolved, 180U);
unsigned char bytes[45U];
unsigned int j = 0U;
for (unsigned int i = 0U; i < 180U; i++) {
unsigned int n = INTERLEAVE_TABLE_9_20[i];
bool s0 = READ_BIT1(convolved, j) != 0U;
j++;
bool s1 = READ_BIT1(convolved, j) != 0U;
j++;
WRITE_BIT1(bytes, n, s0);
n++;
WRITE_BIT1(bytes, n, s1);
}
unsigned char* p1 = data + 9U;
unsigned char* p2 = bytes;
for (unsigned int i = 0U; i < 5U; i++) {
::memcpy(p1, p2, 9U);
p1 += 18U; p2 += 9U;
}
}
void CYSFPayload::setUplink(const std::string& callsign)
{
m_uplink = new unsigned char[YSF_CALLSIGN_LENGTH];
std::string uplink = callsign;
uplink.resize(YSF_CALLSIGN_LENGTH, ' ');
for (unsigned int i = 0U; i < YSF_CALLSIGN_LENGTH; i++)
m_uplink[i] = uplink.at(i);
}
void CYSFPayload::setDownlink(const std::string& callsign)
{
m_downlink = new unsigned char[YSF_CALLSIGN_LENGTH];
std::string downlink = callsign;
downlink.resize(YSF_CALLSIGN_LENGTH, ' ');
for (unsigned int i = 0U; i < YSF_CALLSIGN_LENGTH; i++)
m_downlink[i] = downlink.at(i);
}
unsigned char* CYSFPayload::getSource()
{
return m_source;
}
unsigned char* CYSFPayload::getDest()
{
return m_dest;
}
void CYSFPayload::reset()
{
delete[] m_source;
delete[] m_dest;
m_source = NULL;
m_dest = NULL;
}