MMDVMHost-Private/RS241213.cpp
2016-09-28 09:26:23 +01:00

370 lines
9.6 KiB
C++

/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "RS241213.h"
#include <cstdio>
#include <cassert>
const unsigned char ENCODE_MATRIX[12U][24U] = {
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 062, 044, 003, 025, 014, 016, 027, 003, 053, 004, 036, 047},
{0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 011, 012, 011, 011, 016, 064, 067, 055, 001, 076, 026, 073},
{0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 003, 001, 005, 075, 014, 006, 020, 044, 066, 006, 070, 066},
{0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 021, 070, 027, 045, 016, 067, 023, 064, 073, 033, 044, 021},
{0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 030, 022, 003, 075, 015, 015, 033, 015, 051, 003, 053, 050},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 001, 041, 027, 056, 076, 064, 021, 053, 004, 025, 001, 012},
{0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 061, 076, 021, 055, 076, 001, 063, 035, 030, 013, 064, 070},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 024, 022, 071, 056, 021, 035, 073, 042, 057, 074, 043, 076},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 072, 042, 005, 020, 043, 047, 033, 056, 001, 016, 013, 076},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 072, 014, 065, 054, 035, 025, 041, 016, 015, 040, 071, 026},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 073, 065, 036, 061, 042, 022, 017, 004, 044, 020, 025, 005},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 071, 005, 055, 003, 071, 034, 060, 011, 074, 002, 041, 050}};
const unsigned int rsGFexp[64] = {
1, 2, 4, 8, 16, 32, 3, 6, 12, 24, 48, 35, 5, 10, 20, 40,
19, 38, 15, 30, 60, 59, 53, 41, 17, 34, 7, 14, 28, 56, 51, 37,
9, 18, 36, 11, 22, 44, 27, 54, 47, 29, 58, 55, 45, 25, 50, 39,
13, 26, 52, 43, 21, 42, 23, 46, 31, 62, 63, 61, 57, 49, 33, 0 };
const unsigned int rsGFlog[64] = {
63, 0, 1, 6, 2, 12, 7, 26, 3, 32, 13, 35, 8, 48, 27, 18,
4, 24, 33, 16, 14, 52, 36, 54, 9, 45, 49, 38, 28, 41, 19, 56,
5, 62, 25, 11, 34, 31, 17, 47, 15, 23, 53, 51, 37, 44, 55, 40,
10, 61, 46, 30, 50, 22, 39, 43, 29, 60, 42, 21, 20, 59, 57, 58 };
const unsigned char BIT_MASK_TABLE[] = { 0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U };
#define WRITE_BIT(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7])
#define READ_BIT(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7])
static unsigned char bin2Hex(const unsigned char* input, unsigned int offset)
{
unsigned char output = 0x00U;
output |= READ_BIT(input, offset + 0U) ? 0x20U : 0x00U;
output |= READ_BIT(input, offset + 1U) ? 0x10U : 0x00U;
output |= READ_BIT(input, offset + 2U) ? 0x08U : 0x00U;
output |= READ_BIT(input, offset + 3U) ? 0x04U : 0x00U;
output |= READ_BIT(input, offset + 4U) ? 0x02U : 0x00U;
output |= READ_BIT(input, offset + 5U) ? 0x01U : 0x00U;
return output;
}
static void hex2Bin(unsigned char input, unsigned char* output, unsigned int offset)
{
WRITE_BIT(output, offset + 0U, input & 0x20U);
WRITE_BIT(output, offset + 1U, input & 0x10U);
WRITE_BIT(output, offset + 2U, input & 0x08U);
WRITE_BIT(output, offset + 3U, input & 0x04U);
WRITE_BIT(output, offset + 4U, input & 0x02U);
WRITE_BIT(output, offset + 5U, input & 0x01U);
}
CRS241213::CRS241213()
{
}
CRS241213::~CRS241213()
{
}
bool CRS241213::decode(unsigned char* data)
{
assert(data != NULL);
unsigned char HB[24U];
unsigned int offset = 0U;
for (unsigned int i = 0U; i < 24U; i++, offset += 6U)
HB[i] = bin2Hex(data, offset);
//RS (63,63-nroots,nroots+1) decoder where nroots = number of parity bits
// rsDec(8, 39) rsDec(16, 27) rsDec(12, 39)
const int nroots = 12;
int lambda[18];//Err+Eras Locator poly
int S[17];//syndrome poly
int b[18];
int t[18];
int omega[18];
int root[17];
int reg[18];
int locn[17];
int i, j, count, r, el, SynError, DiscrR, q, DegOmega, tmp, num1, num2, den, DegLambda;
//form the syndromes; i.e., evaluate HB(x) at roots of g(x)
for (i = 0; i <= nroots - 1; i++) {
S[i] = HB[0];
}
for (j = 1; j <= 23; j++) { // XXX was 62
for (i = 0; i <= nroots - 1; i++) {
if (S[i] == 0) {
S[i] = HB[j];
} else {
S[i] = HB[j] ^ rsGFexp[(rsGFlog[S[i]] + i + 1) % 63];
}
}
}
//convert syndromes to index form, checking for nonzero condition
SynError = 0;
for (i = 0; i <= nroots - 1; i++) {
SynError = SynError | S[i];
S[i] = rsGFlog[S[i]];
}
if (SynError == 0) {
//if syndrome is zero, rsData[] is a codeword and there are
//no errors to correct. So return rsData[] unmodified
count = 0;
return true;
}
for (i = 1; i <= nroots; i++) {
lambda[i] = 0;
}
lambda[0] = 1;
for (i = 0; i <= nroots; i++) {
b[i] = rsGFlog[lambda[i]];
}
//begin Berlekamp-Massey algorithm to determine error+erasure
//locator polynomial
r = 0;
el = 0;
while (r < nroots) { //r is the step number
r = r + 1;
//compute discrepancy at the r-th step in poly-form
DiscrR = 0;
for (i = 0; i <= r - 1; i++) {
if ((lambda[i] != 0) && (S[r - i - 1] != 63)) {
DiscrR = DiscrR ^ rsGFexp[(rsGFlog[lambda[i]] + S[r - i - 1]) % 63];
}
}
DiscrR = rsGFlog[DiscrR];//index form
if (DiscrR == 63) {
//shift elements upward one step
for (i = nroots; i >= 1; i += -1) {
b[i] = b[i - 1];
}
b[0] = 63;
} else {
//t(x) <-- lambda(x) - DiscrR*x*b(x)
t[0] = lambda[0];
for (i = 0; i <= nroots - 1; i++) {
if (b[i] != 63) {
t[i + 1] = lambda[i + 1] ^ rsGFexp[(DiscrR + b[i]) % 63];
} else {
t[i + 1] = lambda[i + 1];
}
}
if (2 * el <= r - 1) {
el = r - el;
//b(x) <-- inv(DiscrR) * lambda(x)
for (i = 0; i <= nroots; i++) {
if (lambda[i]) {
b[i] = (rsGFlog[lambda[i]] - DiscrR + 63) % 63;
} else {
b[i] = 63;
}
}
} else {
//shift elements upward one step
for (i = nroots; i >= 1; i += -1) {
b[i] = b[i - 1];
}
b[0] = 63;
}
for (i = 0; i <= nroots; i++) {
lambda[i] = t[i];
}
}
} /* end while() */
//convert lambda to index form and compute deg(lambda(x))
DegLambda = 0;
for (i = 0; i <= nroots; i++) {
lambda[i] = rsGFlog[lambda[i]];
if (lambda[i] != 63) {
DegLambda = i;
}
}
//Find roots of the error+erasure locator polynomial by Chien search
for (i = 1; i <= nroots; i++) {
reg[i] = lambda[i];
}
count = 0;//number of roots of lambda(x)
for (i = 1; i <= 63; i++) {
q = 1;//lambda[0] is always 0
for (j = DegLambda; j >= 1; j += -1) {
if (reg[j] != 63) {
reg[j] = (reg[j] + j) % 63;
q = q ^ rsGFexp[reg[j]];
}
}
if (q == 0) { //it is a root
//store root (index-form) and error location number
root[count] = i;
locn[count] = i - 1;
//if wehave max possible roots, abort search to save time
count = count + 1;
if (count == DegLambda) {
break;
}
}
}
if (DegLambda != count) {
//deg(lambda) unequal to number of roots => uncorrectable error detected
return false;
}
//compute err+eras evaluator poly omega(x)
// = s(x)*lambda(x) (modulo x**nroots). in index form. Also find deg(omega).
DegOmega = 0;
for (i = 0; i <= nroots - 1; i++) {
tmp = 0;
if (DegLambda < i) {
j = DegLambda;
} else {
j = i;
}
for ( /* j = j */; j >= 0; j += -1) {
if ((S[i - j] != 63) && (lambda[j] != 63)) {
tmp = tmp ^ rsGFexp[(S[i - j] + lambda[j]) % 63];
}
}
if (tmp) {
DegOmega = i;
}
omega[i] = rsGFlog[tmp];
}
omega[nroots] = 63;
//compute error values in poly-form:
// num1 = omega(inv(X(l)))
// num2 = inv(X(l))**(FCR - 1)
// den = lambda_pr(inv(X(l)))
for (j = count - 1; j >= 0; j += -1) {
num1 = 0;
for (i = DegOmega; i >= 0; i += -1) {
if (omega[i] != 63) {
num1 = num1 ^ rsGFexp[(omega[i] + i * root[j]) % 63];
}
}
num2 = rsGFexp[0];
den = 0;
// lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i]
if (DegLambda < nroots) {
i = DegLambda;
} else {
i = nroots;
}
for (i = i & ~1; i >= 0; i += -2) {
if (lambda[i + 1] != 63) {
den = den ^ rsGFexp[(lambda[i + 1] + i * root[j]) % 63];
}
}
if (den == 0) {
return false;
}
// apply error to data
if (num1 != 0) {
HB[locn[j]] = HB[locn[j]] ^ (rsGFexp[(rsGFlog[num1] + rsGFlog[num2] + 63 - rsGFlog[den]) % 63]);
}
}
offset = 0U;
for (unsigned int i = 0U; i < 12U; i++, offset += 6U)
hex2Bin(HB[i], data, offset);
return true;
}
void CRS241213::encode(unsigned char* data)
{
assert(data != NULL);
unsigned char codeword[24U];
for (unsigned int i = 0U; i < 24U; i++) {
codeword[i] = 0x00U;
unsigned int offset = 0U;
for (unsigned int j = 0U; j < 12U; j++, offset += 6U) {
unsigned char hexbit = bin2Hex(data, offset);
codeword[i] ^= gf6Mult(hexbit, ENCODE_MATRIX[j][i]);
}
}
unsigned int offset = 0U;
for (unsigned int i = 0U; i < 24U; i++, offset += 6U)
hex2Bin(codeword[i], data, offset);
}
// GF(2 ^ 6) multiply(for Reed - Solomon encoder)
unsigned char CRS241213::gf6Mult(unsigned char a, unsigned char b) const
{
unsigned char p = 0x00U;
for (unsigned int i = 0U; i < 6U; i++) {
if ((b & 0x01U) == 0x01U)
p ^= a;
a <<= 1;
if ((a & 0x40U) == 0x40U)
a ^= 0x43U; // primitive polynomial : x ^ 6 + x + 1
b >>= 1;
}
return p;
}