MMDVMHost-Private/P25Control.cpp

464 lines
10 KiB
C++

/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "P25Control.h"
#include "P25LowSpeedData.h"
#include "P25Defines.h"
#include "Sync.h"
#include "Log.h"
#include "Utils.h"
#include <cassert>
#include <ctime>
// #define DUMP_P25
const unsigned char BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
#define WRITE_BIT(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7])
#define READ_BIT(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7])
CP25Control::CP25Control(unsigned int nac, CP25Network* network, CDisplay* display, unsigned int timeout, bool duplex, CDMRLookup* lookup, int rssiMultiplier, int rssiOffset) :
m_nac(nac),
m_network(network),
m_display(display),
m_duplex(duplex),
m_lookup(lookup),
m_rssiMultiplier(rssiMultiplier),
m_rssiOffset(rssiOffset),
m_queue(1000U, "P25 Control"),
m_rfState(RS_RF_LISTENING),
m_netState(RS_NET_IDLE),
m_rfTimeout(1000U, timeout),
m_netTimeout(1000U, timeout),
m_networkWatchdog(1000U, 0U, 1500U),
m_rfFrames(0U),
m_rfBits(0U),
m_rfErrs(0U),
m_netFrames(0U),
m_netBits(0U),
m_netErrs(0U),
m_netLost(0U),
m_nid(nac),
m_audio(),
m_rfData(),
m_netData()
{
assert(display != NULL);
assert(lookup != NULL);
}
CP25Control::~CP25Control()
{
}
bool CP25Control::writeModem(unsigned char* data, unsigned int len)
{
assert(data != NULL);
// CUtils::dump(1U, "P25 Data", data, len);
bool sync = data[1U] == 0x01U;
if (data[0U] == TAG_LOST && m_rfState == RS_RF_LISTENING)
return false;
if (data[0U] == TAG_LOST) {
LogMessage("P25, transmission lost, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits));
if (m_netState == RS_NET_IDLE)
m_display->clearP25();
writeNetwork(data + 2U, P25_DUID_TERM);
m_rfState = RS_RF_LISTENING;
m_rfTimeout.stop();
m_rfData.reset();
#if defined(DUMP_P25)
closeFile();
#endif
return false;
}
if (!sync && m_rfState == RS_RF_LISTENING)
return false;
// Regenerate the NID
m_nid.process(data + 2U);
unsigned char duid = m_nid.getDUID();
unsigned int nac = m_nid.getNAC();
LogDebug("P25, DUID=$%X NAC=$%03X", duid, nac);
if (m_rfState == RS_RF_LISTENING && nac != m_nac)
return false;
if (data[0U] == TAG_HEADER) {
m_rfData.reset();
// Regenerate Sync
CSync::addP25Sync(data + 2U);
// Regenerate Enc Data
m_rfData.processHeader(data + 2U);
// Add busy bits
addBusyBits(data + 2U, P25_HDR_FRAME_LENGTH_BITS, false, true);
m_rfFrames = 0U;
m_rfErrs = 0U;
m_rfBits = 1U;
m_rfTimeout.start();
#if defined(DUMP_P25)
openFile();
writeFile(data + 2U, len - 2U);
#endif
writeNetwork(data + 2U, P25_DUID_HEADER);
if (m_duplex) {
data[0U] = TAG_HEADER;
data[1U] = 0x00U;
writeQueueRF(data, P25_HDR_FRAME_LENGTH_BYTES + 2U);
}
LogMessage("P25, received RF header");
} else if (duid == P25_DUID_LDU1) {
if (m_rfState == RS_RF_LISTENING) {
m_rfFrames = 0U;
m_rfErrs = 0U;
m_rfBits = 1U;
m_rfTimeout.start();
#if defined(DUMP_P25)
openFile();
#endif
}
// Regenerate Sync
CSync::addP25Sync(data + 2U);
// Regenerate LDU1 Data
m_rfData.processLDU1(data + 2U);
// Regenerate the Low Speed Data
CP25LowSpeedData::process(data + 2U);
// Regenerate Audio
unsigned int errors = m_audio.process(data + 2U);
LogDebug("P25, LDU1 audio, errs: %u/1233", errors);
m_rfBits += 1233U;
m_rfErrs += errors;
m_rfFrames++;
// Add busy bits
addBusyBits(data + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true);
#if defined(DUMP_P25)
writeFile(data + 2U, len - 2U);
#endif
writeNetwork(data + 2U, P25_DUID_LDU1);
if (m_duplex) {
data[0U] = TAG_DATA;
data[1U] = 0x00U;
writeQueueRF(data, P25_LDU_FRAME_LENGTH_BYTES + 2U);
}
if (m_rfState == RS_RF_LISTENING) {
unsigned int src = m_rfData.getSource();
bool grp = m_rfData.getGroup();
unsigned int dst = m_rfData.getDest();
std::string source = m_lookup->find(src);
LogMessage("P25, received RF from %s to %s%u", source.c_str(), grp ? "TG" : "", dst);
m_display->writeP25(source.c_str(), grp, dst, "R");
m_rfState = RS_RF_AUDIO;
}
} else if (duid == P25_DUID_LDU2) {
if (m_rfState == RS_RF_LISTENING)
return false;
// Regenerate Sync
CSync::addP25Sync(data + 2U);
// Regenerate LDU2 Data
m_rfData.processLDU2(data + 2U);
// Regenerate the Low Speed Data
CP25LowSpeedData::process(data + 2U);
// Regenerate Audio
unsigned int errors = m_audio.process(data + 2U);
LogDebug("P25, LDU2 audio, errs: %u/1233", errors);
m_rfBits += 1233U;
m_rfErrs += errors;
m_rfFrames++;
// Add busy bits
addBusyBits(data + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true);
#if defined(DUMP_P25)
writeFile(data + 2U, len - 2U);
#endif
writeNetwork(data + 2U, P25_DUID_LDU2);
if (m_duplex) {
data[0U] = TAG_DATA;
data[1U] = 0x00U;
writeQueueRF(data, P25_LDU_FRAME_LENGTH_BYTES + 2U);
}
} else if (duid == P25_DUID_TERM_LC) {
if (m_rfState == RS_RF_LISTENING)
return false;
// Regenerate Sync
CSync::addP25Sync(data + 2U);
// Regenerate LDU1 Data
m_rfData.processTerminator(data + 2U);
// Add busy bits
addBusyBits(data + 2U, P25_TERMLC_FRAME_LENGTH_BITS, false, true);
m_rfState = RS_RF_LISTENING;
m_rfTimeout.stop();
m_rfData.reset();
LogMessage("P25, received RF end of transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits));
m_display->clearP25();
#if defined(DUMP_P25)
closeFile();
#endif
writeNetwork(data + 2U, P25_DUID_TERM_LC);
if (m_duplex) {
data[0U] = TAG_EOT;
data[1U] = 0x00U;
writeQueueRF(data, P25_TERMLC_FRAME_LENGTH_BYTES + 2U);
}
} else if (duid == P25_DUID_TERM) {
if (m_rfState == RS_RF_LISTENING)
return false;
// Regenerate Sync
CSync::addP25Sync(data + 2U);
// Add busy bits
addBusyBits(data + 2U, P25_TERM_FRAME_LENGTH_BITS, false, true);
m_rfState = RS_RF_LISTENING;
m_rfTimeout.stop();
m_rfData.reset();
LogMessage("P25, received RF end of transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits));
m_display->clearP25();
#if defined(DUMP_P25)
closeFile();
#endif
writeNetwork(data + 2U, P25_DUID_TERM);
if (m_duplex) {
data[0U] = TAG_EOT;
data[1U] = 0x00U;
writeQueueRF(data, P25_TERM_FRAME_LENGTH_BYTES + 2U);
}
} else {
return false;
}
return true;
}
unsigned int CP25Control::readModem(unsigned char* data)
{
assert(data != NULL);
if (m_queue.isEmpty())
return 0U;
unsigned char len = 0U;
m_queue.getData(&len, 1U);
m_queue.getData(data, len);
return len;
}
void CP25Control::writeNetwork()
{
unsigned char data[200U];
unsigned int length = m_network->read(data, 200U);
if (length == 0U)
return;
if (m_rfState != RS_RF_LISTENING && m_netState == RS_NET_IDLE)
return;
m_networkWatchdog.start();
}
void CP25Control::clock(unsigned int ms)
{
if (m_network != NULL)
writeNetwork();
m_rfTimeout.clock(ms);
m_netTimeout.clock(ms);
if (m_netState == RS_NET_AUDIO) {
m_networkWatchdog.clock(ms);
if (m_networkWatchdog.hasExpired()) {
LogMessage("P25, network watchdog has expired, %.1f seconds, %u%% packet loss, BER: %.1f%%", float(m_netFrames) / 5.56F, (m_netLost * 100U) / m_netFrames, float(m_netErrs * 100U) / float(m_netBits));
m_display->clearP25();
m_networkWatchdog.stop();
m_netState = RS_NET_IDLE;
m_netTimeout.stop();
}
}
}
void CP25Control::writeQueueRF(const unsigned char* data, unsigned int length)
{
assert(data != NULL);
if (m_rfTimeout.isRunning() && m_rfTimeout.hasExpired())
return;
unsigned int space = m_queue.freeSpace();
if (space < (length + 1U)) {
LogError("P25, overflow in the P25 RF queue");
return;
}
unsigned char len = length;
m_queue.addData(&len, 1U);
m_queue.addData(data, len);
}
void CP25Control::writeQueueNet(const unsigned char* data, unsigned int length)
{
assert(data != NULL);
if (m_netTimeout.isRunning() && m_netTimeout.hasExpired())
return;
unsigned int space = m_queue.freeSpace();
if (space < (length + 1U)) {
LogError("P25, overflow in the P25 RF queue");
return;
}
unsigned char len = length;
m_queue.addData(&len, 1U);
m_queue.addData(data, len);
}
void CP25Control::writeNetwork(const unsigned char *data, unsigned char type)
{
assert(data != NULL);
if (m_network == NULL)
return;
if (m_rfTimeout.isRunning() && m_rfTimeout.hasExpired())
return;
switch (type)
{
case P25_DUID_HEADER:
m_network->writeHeader(data);
break;
case P25_DUID_LDU1:
m_network->writeLDU1(data);
break;
case P25_DUID_LDU2:
m_network->writeLDU2(data);
break;
case P25_DUID_TERM:
case P25_DUID_TERM_LC:
m_network->writeTerminator(data);
break;
default:
m_network->writeEnd();
break;
}
}
void CP25Control::addBusyBits(unsigned char* data, unsigned int length, bool b1, bool b2)
{
assert(data != NULL);
for (unsigned int ss0Pos = P25_SS0_START; ss0Pos < length; ss0Pos += P25_SS_INCREMENT) {
unsigned int ss1Pos = ss0Pos + 1U;
WRITE_BIT(data, ss0Pos, b1);
WRITE_BIT(data, ss1Pos, b2);
}
}
bool CP25Control::openFile()
{
if (m_fp != NULL)
return true;
time_t t;
::time(&t);
struct tm* tm = ::localtime(&t);
char name[100U];
::sprintf(name, "P25_%04d%02d%02d_%02d%02d%02d.ambe", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec);
m_fp = ::fopen(name, "wb");
if (m_fp == NULL)
return false;
::fwrite("P25", 1U, 3U, m_fp);
return true;
}
bool CP25Control::writeFile(const unsigned char* data, unsigned char length)
{
if (m_fp == NULL)
return false;
::fwrite(&length, 1U, 1U, m_fp);
::fwrite(data, 1U, length, m_fp);
return true;
}
void CP25Control::closeFile()
{
if (m_fp != NULL) {
::fclose(m_fp);
m_fp = NULL;
}
}