/* * Copyright (C) 2016,2017,2020 Jonathan Naylor, G4KLX * Copyright (C) 2016 Mathias Weyland, HB9FRV * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "YSFConvolution.h" #include "YSFPayload.h" #include "YSFDefines.h" #include "Utils.h" #include "CRC.h" #include "Log.h" #include #include #include #include const unsigned int INTERLEAVE_TABLE_9_20[] = { 0U, 40U, 80U, 120U, 160U, 200U, 240U, 280U, 320U, 2U, 42U, 82U, 122U, 162U, 202U, 242U, 282U, 322U, 4U, 44U, 84U, 124U, 164U, 204U, 244U, 284U, 324U, 6U, 46U, 86U, 126U, 166U, 206U, 246U, 286U, 326U, 8U, 48U, 88U, 128U, 168U, 208U, 248U, 288U, 328U, 10U, 50U, 90U, 130U, 170U, 210U, 250U, 290U, 330U, 12U, 52U, 92U, 132U, 172U, 212U, 252U, 292U, 332U, 14U, 54U, 94U, 134U, 174U, 214U, 254U, 294U, 334U, 16U, 56U, 96U, 136U, 176U, 216U, 256U, 296U, 336U, 18U, 58U, 98U, 138U, 178U, 218U, 258U, 298U, 338U, 20U, 60U, 100U, 140U, 180U, 220U, 260U, 300U, 340U, 22U, 62U, 102U, 142U, 182U, 222U, 262U, 302U, 342U, 24U, 64U, 104U, 144U, 184U, 224U, 264U, 304U, 344U, 26U, 66U, 106U, 146U, 186U, 226U, 266U, 306U, 346U, 28U, 68U, 108U, 148U, 188U, 228U, 268U, 308U, 348U, 30U, 70U, 110U, 150U, 190U, 230U, 270U, 310U, 350U, 32U, 72U, 112U, 152U, 192U, 232U, 272U, 312U, 352U, 34U, 74U, 114U, 154U, 194U, 234U, 274U, 314U, 354U, 36U, 76U, 116U, 156U, 196U, 236U, 276U, 316U, 356U, 38U, 78U, 118U, 158U, 198U, 238U, 278U, 318U, 358U}; const unsigned int INTERLEAVE_TABLE_5_20[] = { 0U, 40U, 80U, 120U, 160U, 2U, 42U, 82U, 122U, 162U, 4U, 44U, 84U, 124U, 164U, 6U, 46U, 86U, 126U, 166U, 8U, 48U, 88U, 128U, 168U, 10U, 50U, 90U, 130U, 170U, 12U, 52U, 92U, 132U, 172U, 14U, 54U, 94U, 134U, 174U, 16U, 56U, 96U, 136U, 176U, 18U, 58U, 98U, 138U, 178U, 20U, 60U, 100U, 140U, 180U, 22U, 62U, 102U, 142U, 182U, 24U, 64U, 104U, 144U, 184U, 26U, 66U, 106U, 146U, 186U, 28U, 68U, 108U, 148U, 188U, 30U, 70U, 110U, 150U, 190U, 32U, 72U, 112U, 152U, 192U, 34U, 74U, 114U, 154U, 194U, 36U, 76U, 116U, 156U, 196U, 38U, 78U, 118U, 158U, 198U}; // This one differs from the others in that it interleaves bits and not dibits const unsigned int INTERLEAVE_TABLE_26_4[] = { 0U, 4U, 8U, 12U, 16U, 20U, 24U, 28U, 32U, 36U, 40U, 44U, 48U, 52U, 56U, 60U, 64U, 68U, 72U, 76U, 80U, 84U, 88U, 92U, 96U, 100U, 1U, 5U, 9U, 13U, 17U, 21U, 25U, 29U, 33U, 37U, 41U, 45U, 49U, 53U, 57U, 61U, 65U, 69U, 73U, 77U, 81U, 85U, 89U, 93U, 97U, 101U, 2U, 6U, 10U, 14U, 18U, 22U, 26U, 30U, 34U, 38U, 42U, 46U, 50U, 54U, 58U, 62U, 66U, 70U, 74U, 78U, 82U, 86U, 90U, 94U, 98U, 102U, 3U, 7U, 11U, 15U, 19U, 23U, 27U, 31U, 35U, 39U, 43U, 47U, 51U, 55U, 59U, 63U, 67U, 71U, 75U, 79U, 83U, 87U, 91U, 95U, 99U, 103U}; const unsigned char WHITENING_DATA[] = {0x93U, 0xD7U, 0x51U, 0x21U, 0x9CU, 0x2FU, 0x6CU, 0xD0U, 0xEFU, 0x0FU, 0xF8U, 0x3DU, 0xF1U, 0x73U, 0x20U, 0x94U, 0xEDU, 0x1EU, 0x7CU, 0xD8U}; const unsigned char BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U}; #define WRITE_BIT1(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7]) #define READ_BIT1(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7]) CYSFPayload::CYSFPayload() : m_uplink(NULL), m_downlink(NULL), m_source(NULL), m_dest(NULL), m_fec() { } CYSFPayload::~CYSFPayload() { delete[] m_uplink; delete[] m_downlink; delete[] m_source; delete[] m_dest; } bool CYSFPayload::processHeaderData(unsigned char* data) { assert(data != NULL); data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES; unsigned char dch[45U]; unsigned char* p1 = data; unsigned char* p2 = dch; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p2, p1, 9U); p1 += 18U; p2 += 9U; } CYSFConvolution conv; conv.start(); for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U; n++; uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U; conv.decode(s0, s1); } unsigned char output[23U]; conv.chainback(output, 176U); bool valid1 = CCRC::checkCCITT162(output, 22U); if (valid1) { for (unsigned int i = 0U; i < 20U; i++) output[i] ^= WHITENING_DATA[i]; if (m_dest == NULL) { m_dest = new unsigned char[YSF_CALLSIGN_LENGTH]; ::memcpy(m_dest, output + 0U, YSF_CALLSIGN_LENGTH); } if (m_source == NULL) { m_source = new unsigned char[YSF_CALLSIGN_LENGTH]; ::memcpy(m_source, output + YSF_CALLSIGN_LENGTH, YSF_CALLSIGN_LENGTH); } for (unsigned int i = 0U; i < 20U; i++) output[i] ^= WHITENING_DATA[i]; CCRC::addCCITT162(output, 22U); output[22U] = 0x00U; unsigned char convolved[45U]; conv.encode(output, convolved, 180U); unsigned char bytes[45U]; unsigned int j = 0U; for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; bool s0 = READ_BIT1(convolved, j) != 0U; j++; bool s1 = READ_BIT1(convolved, j) != 0U; j++; WRITE_BIT1(bytes, n, s0); n++; WRITE_BIT1(bytes, n, s1); } p1 = data; p2 = bytes; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p1, p2, 9U); p1 += 18U; p2 += 9U; } } p1 = data + 9U; p2 = dch; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p2, p1, 9U); p1 += 18U; p2 += 9U; } conv.start(); for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U; n++; uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U; conv.decode(s0, s1); } conv.chainback(output, 176U); bool valid2 = CCRC::checkCCITT162(output, 22U); if (valid2) { for (unsigned int i = 0U; i < 20U; i++) output[i] ^= WHITENING_DATA[i]; if (m_downlink != NULL) ::memcpy(output + 0U, m_downlink, YSF_CALLSIGN_LENGTH); if (m_uplink != NULL) ::memcpy(output + YSF_CALLSIGN_LENGTH, m_uplink, YSF_CALLSIGN_LENGTH); for (unsigned int i = 0U; i < 20U; i++) output[i] ^= WHITENING_DATA[i]; CCRC::addCCITT162(output, 22U); output[22U] = 0x00U; unsigned char convolved[45U]; conv.encode(output, convolved, 180U); unsigned char bytes[45U]; unsigned int j = 0U; for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; bool s0 = READ_BIT1(convolved, j) != 0U; j++; bool s1 = READ_BIT1(convolved, j) != 0U; j++; WRITE_BIT1(bytes, n, s0); n++; WRITE_BIT1(bytes, n, s1); } p1 = data + 9U; p2 = bytes; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p1, p2, 9U); p1 += 18U; p2 += 9U; } } return valid1; } unsigned int CYSFPayload::processVDMode1Audio(unsigned char* data) { assert(data != NULL); data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES; // Regenerate the AMBE FEC unsigned int errors = 0U; errors += m_fec.regenerateYSFDN(data + 9U); errors += m_fec.regenerateYSFDN(data + 27U); errors += m_fec.regenerateYSFDN(data + 45U); errors += m_fec.regenerateYSFDN(data + 63U); errors += m_fec.regenerateYSFDN(data + 81U); return errors; } bool CYSFPayload::processVDMode1Data(unsigned char* data, unsigned char fn, bool gateway) { assert(data != NULL); data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES; unsigned char dch[45U]; unsigned char* p1 = data; unsigned char* p2 = dch; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p2, p1, 9U); p1 += 18U; p2 += 9U; } CYSFConvolution conv; conv.start(); for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U; n++; uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U; conv.decode(s0, s1); } unsigned char output[23U]; conv.chainback(output, 176U); bool ret = CCRC::checkCCITT162(output, 22U); if (ret) { for (unsigned int i = 0U; i < 20U; i++) output[i] ^= WHITENING_DATA[i]; switch (fn) { case 0U: if (m_dest == NULL) { m_dest = new unsigned char[YSF_CALLSIGN_LENGTH]; ::memcpy(m_dest, output + 0U, YSF_CALLSIGN_LENGTH); } if (m_source == NULL) { m_source = new unsigned char[YSF_CALLSIGN_LENGTH]; ::memcpy(m_source, output + YSF_CALLSIGN_LENGTH, YSF_CALLSIGN_LENGTH); } break; case 1U: if (m_downlink != NULL && !gateway) ::memcpy(output + 0U, m_downlink, YSF_CALLSIGN_LENGTH); if (m_uplink != NULL && !gateway) ::memcpy(output + YSF_CALLSIGN_LENGTH, m_uplink, YSF_CALLSIGN_LENGTH); break; case 3U: // CUtils::dump(1U, "V/D Mode 1 Data, DT1", output, 20U); break; case 4U: // CUtils::dump(1U, "V/D Mode 1 Data, DT2", output, 20U); break; case 5U: // CUtils::dump(1U, "V/D Mode 1 Data, DT3", output, 20U); break; case 6U: // CUtils::dump(1U, "V/D Mode 1 Data, DT4", output, 20U); break; case 7U: // CUtils::dump(1U, "V/D Mode 1 Data, DT5", output, 20U); break; default: break; } for (unsigned int i = 0U; i < 20U; i++) output[i] ^= WHITENING_DATA[i]; CCRC::addCCITT162(output, 22U); output[22U] = 0x00U; unsigned char convolved[45U]; conv.encode(output, convolved, 180U); unsigned char bytes[45U]; unsigned int j = 0U; for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; bool s0 = READ_BIT1(convolved, j) != 0U; j++; bool s1 = READ_BIT1(convolved, j) != 0U; j++; WRITE_BIT1(bytes, n, s0); n++; WRITE_BIT1(bytes, n, s1); } p1 = data; p2 = bytes; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p1, p2, 9U); p1 += 18U; p2 += 9U; } } return ret && (fn == 0U); } unsigned int CYSFPayload::processVDMode2Audio(unsigned char* data) { assert(data != NULL); data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES; unsigned int errors = 0U; unsigned int offset = 40U; // DCH(0) // We have a total of 5 VCH sections, iterate through each for (unsigned int j = 0U; j < 5U; j++, offset += 144U) { unsigned int errs = 0U; unsigned char vch[13U]; // Deinterleave for (unsigned int i = 0U; i < 104U; i++) { unsigned int n = INTERLEAVE_TABLE_26_4[i]; bool s = READ_BIT1(data, offset + n); WRITE_BIT1(vch, i, s); } // "Un-whiten" (descramble) for (unsigned int i = 0U; i < 13U; i++) vch[i] ^= WHITENING_DATA[i]; // errors += READ_BIT1(vch, 103); // Padding bit must be zero but apparently it is not... for (unsigned int i = 0U; i < 81U; i += 3) { uint8_t vote = 0U; vote += READ_BIT1(vch, i + 0U) ? 1U : 0U; vote += READ_BIT1(vch, i + 1U) ? 1U : 0U; vote += READ_BIT1(vch, i + 2U) ? 1U : 0U; switch (vote) { case 1U: // 1 0 0, or 0 1 0, or 0 0 1, convert to 0 0 0 WRITE_BIT1(vch, i + 0U, false); WRITE_BIT1(vch, i + 1U, false); WRITE_BIT1(vch, i + 2U, false); errs++; break; case 2U: // 1 1 0, or 0 1 1, or 1 0 1, convert to 1 1 1 WRITE_BIT1(vch, i + 0U, true); WRITE_BIT1(vch, i + 1U, true); WRITE_BIT1(vch, i + 2U, true); errs++; break; default: // 0U (0 0 0), or 3U (1 1 1), no errors break; } } // Reconstruct only if we have bit errors. if (errs > 0U) { // Accumulate the total number of errors errors += errs; // Scramble for (unsigned int i = 0U; i < 13U; i++) vch[i] ^= WHITENING_DATA[i]; // Interleave for (unsigned int i = 0U; i < 104U; i++) { unsigned int n = INTERLEAVE_TABLE_26_4[i]; bool s = READ_BIT1(vch, i); WRITE_BIT1(data, offset + n, s); } } } // "errors" is the number of triplets that were recognized to be corrupted // and that were corrected. There are 27 of those per VCH and 5 VCH per CC, // yielding a total of 27*5 = 135. I believe the expected value of this // error distribution to be Bin(1;3,BER)+Bin(2;3,BER) which entails 75% for // BER = 0.5. return errors; } bool CYSFPayload::processVDMode2Data(unsigned char* data, unsigned char fn, bool gateway) { assert(data != NULL); data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES; unsigned char dch[25U]; unsigned char* p1 = data; unsigned char* p2 = dch; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p2, p1, 5U); p1 += 18U; p2 += 5U; } CYSFConvolution conv; conv.start(); for (unsigned int i = 0U; i < 100U; i++) { unsigned int n = INTERLEAVE_TABLE_5_20[i]; uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U; n++; uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U; conv.decode(s0, s1); } unsigned char output[13U]; conv.chainback(output, 96U); bool ret = CCRC::checkCCITT162(output, 12U); if (ret) { for (unsigned int i = 0U; i < 10U; i++) output[i] ^= WHITENING_DATA[i]; switch (fn) { case 0U: if (m_dest == NULL) { m_dest = new unsigned char[YSF_CALLSIGN_LENGTH]; ::memcpy(m_dest, output, YSF_CALLSIGN_LENGTH); } break; case 1U: if (m_source == NULL) { m_source = new unsigned char[YSF_CALLSIGN_LENGTH]; ::memcpy(m_source, output, YSF_CALLSIGN_LENGTH); } break; case 2U: if (m_downlink != NULL && !gateway) ::memcpy(output, m_downlink, YSF_CALLSIGN_LENGTH); break; case 3U: if (m_uplink != NULL && !gateway) ::memcpy(output, m_uplink, YSF_CALLSIGN_LENGTH); break; case 6U: // CUtils::dump(1U, "V/D Mode 2 Data, DT1", output, YSF_CALLSIGN_LENGTH); break; case 7U: // CUtils::dump(1U, "V/D Mode 2 Data, DT2", output, YSF_CALLSIGN_LENGTH); break; default: break; } for (unsigned int i = 0U; i < 10U; i++) output[i] ^= WHITENING_DATA[i]; CCRC::addCCITT162(output, 12U); output[12U] = 0x00U; unsigned char convolved[25U]; conv.encode(output, convolved, 100U); unsigned char bytes[25U]; unsigned int j = 0U; for (unsigned int i = 0U; i < 100U; i++) { unsigned int n = INTERLEAVE_TABLE_5_20[i]; bool s0 = READ_BIT1(convolved, j) != 0U; j++; bool s1 = READ_BIT1(convolved, j) != 0U; j++; WRITE_BIT1(bytes, n, s0); n++; WRITE_BIT1(bytes, n, s1); } p1 = data; p2 = bytes; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p1, p2, 5U); p1 += 18U; p2 += 5U; } } return ret && (fn == 0U || fn == 1U); } bool CYSFPayload::processDataFRModeData(unsigned char* data, unsigned char fn, bool gateway) { assert(data != NULL); data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES; unsigned char dch[45U]; unsigned char* p1 = data; unsigned char* p2 = dch; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p2, p1, 9U); p1 += 18U; p2 += 9U; } CYSFConvolution conv; conv.start(); for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U; n++; uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U; conv.decode(s0, s1); } unsigned char output[23U]; conv.chainback(output, 176U); bool ret1 = CCRC::checkCCITT162(output, 22U); if (ret1) { for (unsigned int i = 0U; i < 20U; i++) output[i] ^= WHITENING_DATA[i]; switch (fn) { case 0U: // CUtils::dump(1U, "FR Mode Data, CSD1", output, 20U); if (m_dest == NULL) { m_dest = new unsigned char[YSF_CALLSIGN_LENGTH]; ::memcpy(m_dest, output + 0U, YSF_CALLSIGN_LENGTH); } if (m_source == NULL) { m_source = new unsigned char[YSF_CALLSIGN_LENGTH]; ::memcpy(m_source, output + YSF_CALLSIGN_LENGTH, YSF_CALLSIGN_LENGTH); } break; case 1U: // CUtils::dump(1U, "FR Mode Data, CSD3", output, 20U); break; case 2U: // CUtils::dump(1U, "FR Mode Data, DT2", output, 20U); break; case 3U: // CUtils::dump(1U, "FR Mode Data, DT4", output, 20U); break; case 4U: // CUtils::dump(1U, "FR Mode Data, DT6", output, 20U); break; case 5U: // CUtils::dump(1U, "FR Mode Data, DT8", output, 20U); break; case 6U: // CUtils::dump(1U, "FR Mode Data, DT10", output, 20U); break; case 7U: // CUtils::dump(1U, "FR Mode Data, DT12", output, 20U); break; default: break; } for (unsigned int i = 0U; i < 20U; i++) output[i] ^= WHITENING_DATA[i]; CCRC::addCCITT162(output, 22U); output[22U] = 0x00U; unsigned char convolved[45U]; conv.encode(output, convolved, 180U); unsigned char bytes[45U]; unsigned int j = 0U; for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; bool s0 = READ_BIT1(convolved, j) != 0U; j++; bool s1 = READ_BIT1(convolved, j) != 0U; j++; WRITE_BIT1(bytes, n, s0); n++; WRITE_BIT1(bytes, n, s1); } p1 = data; p2 = bytes; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p1, p2, 9U); p1 += 18U; p2 += 9U; } } p1 = data + 9U; p2 = dch; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p2, p1, 9U); p1 += 18U; p2 += 9U; } conv.start(); for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U; n++; uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U; conv.decode(s0, s1); } conv.chainback(output, 176U); bool ret2 = CCRC::checkCCITT162(output, 22U); if (ret2) { for (unsigned int i = 0U; i < 20U; i++) output[i] ^= WHITENING_DATA[i]; switch (fn) { case 0U: // CUtils::dump(1U, "FR Mode Data, CSD2", output, 20U); if (m_downlink != NULL && !gateway) ::memcpy(output + 0U, m_downlink, YSF_CALLSIGN_LENGTH); if (m_uplink != NULL && !gateway) ::memcpy(output + YSF_CALLSIGN_LENGTH, m_uplink, YSF_CALLSIGN_LENGTH); break; case 1U: // CUtils::dump(1U, "FR Mode Data, DT1", output, 20U); break; case 2U: // CUtils::dump(1U, "FR Mode Data, DT3", output, 20U); break; case 3U: // CUtils::dump(1U, "FR Mode Data, DT5", output, 20U); break; case 4U: // CUtils::dump(1U, "FR Mode Data, DT7", output, 20U); break; case 5U: // CUtils::dump(1U, "FR Mode Data, DT9", output, 20U); break; case 6U: // CUtils::dump(1U, "FR Mode Data, DT11", output, 20U); break; case 7U: // CUtils::dump(1U, "FR Mode Data, DT13", output, 20U); break; default: break; } for (unsigned int i = 0U; i < 20U; i++) output[i] ^= WHITENING_DATA[i]; CCRC::addCCITT162(output, 22U); output[22U] = 0x00U; unsigned char convolved[45U]; conv.encode(output, convolved, 180U); unsigned char bytes[45U]; unsigned int j = 0U; for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; bool s0 = READ_BIT1(convolved, j) != 0U; j++; bool s1 = READ_BIT1(convolved, j) != 0U; j++; WRITE_BIT1(bytes, n, s0); n++; WRITE_BIT1(bytes, n, s1); } p1 = data + 9U; p2 = bytes; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p1, p2, 9U); p1 += 18U; p2 += 9U; } } return ret1 && (fn == 0U); } unsigned int CYSFPayload::processVoiceFRModeAudio2(unsigned char* data) { assert(data != NULL); data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES; // Regenerate the IMBE FEC unsigned int errors = 0U; errors += m_fec.regenerateIMBE(data + 54U); errors += m_fec.regenerateIMBE(data + 72U); return errors; } unsigned int CYSFPayload::processVoiceFRModeAudio5(unsigned char* data) { assert(data != NULL); data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES; // Regenerate the IMBE FEC unsigned int errors = 0U; errors += m_fec.regenerateIMBE(data + 0U); errors += m_fec.regenerateIMBE(data + 18U); errors += m_fec.regenerateIMBE(data + 36U); errors += m_fec.regenerateIMBE(data + 54U); errors += m_fec.regenerateIMBE(data + 72U); return errors; } bool CYSFPayload::processVoiceFRModeData(unsigned char* data) { assert(data != NULL); data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES; unsigned char dch[45U]; ::memcpy(dch, data, 45U); CYSFConvolution conv; conv.start(); for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; uint8_t s0 = READ_BIT1(dch, n) ? 1U : 0U; n++; uint8_t s1 = READ_BIT1(dch, n) ? 1U : 0U; conv.decode(s0, s1); } unsigned char output[23U]; conv.chainback(output, 176U); bool ret = CCRC::checkCCITT162(output, 22U); if (ret) { CCRC::addCCITT162(output, 22U); output[22U] = 0x00U; unsigned char convolved[45U]; conv.encode(output, convolved, 180U); unsigned char bytes[45U]; unsigned int j = 0U; for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; bool s0 = READ_BIT1(convolved, j) != 0U; j++; bool s1 = READ_BIT1(convolved, j) != 0U; j++; WRITE_BIT1(bytes, n, s0); n++; WRITE_BIT1(bytes, n, s1); } ::memcpy(data, bytes, 45U); } return ret; } void CYSFPayload::writeHeader(unsigned char* data, const unsigned char* csd1, const unsigned char* csd2) { assert(data != NULL); assert(csd1 != NULL); assert(csd2 != NULL); writeDataFRModeData1(csd1, data); writeDataFRModeData2(csd2, data); } void CYSFPayload::writeDataFRModeData1(const unsigned char* dt, unsigned char* data) { assert(dt != NULL); assert(data != NULL); data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES; unsigned char output[25U]; for (unsigned int i = 0U; i < 20U; i++) output[i] = dt[i] ^ WHITENING_DATA[i]; CCRC::addCCITT162(output, 22U); output[22U] = 0x00U; unsigned char convolved[45U]; CYSFConvolution conv; conv.encode(output, convolved, 180U); unsigned char bytes[45U]; unsigned int j = 0U; for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; bool s0 = READ_BIT1(convolved, j) != 0U; j++; bool s1 = READ_BIT1(convolved, j) != 0U; j++; WRITE_BIT1(bytes, n, s0); n++; WRITE_BIT1(bytes, n, s1); } unsigned char* p1 = data; unsigned char* p2 = bytes; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p1, p2, 9U); p1 += 18U; p2 += 9U; } } void CYSFPayload::writeDataFRModeData2(const unsigned char* dt, unsigned char* data) { assert(dt != NULL); assert(data != NULL); data += YSF_SYNC_LENGTH_BYTES + YSF_FICH_LENGTH_BYTES; unsigned char output[25U]; for (unsigned int i = 0U; i < 20U; i++) output[i] = dt[i] ^ WHITENING_DATA[i]; CCRC::addCCITT162(output, 22U); output[22U] = 0x00U; unsigned char convolved[45U]; CYSFConvolution conv; conv.encode(output, convolved, 180U); unsigned char bytes[45U]; unsigned int j = 0U; for (unsigned int i = 0U; i < 180U; i++) { unsigned int n = INTERLEAVE_TABLE_9_20[i]; bool s0 = READ_BIT1(convolved, j) != 0U; j++; bool s1 = READ_BIT1(convolved, j) != 0U; j++; WRITE_BIT1(bytes, n, s0); n++; WRITE_BIT1(bytes, n, s1); } unsigned char* p1 = data + 9U; unsigned char* p2 = bytes; for (unsigned int i = 0U; i < 5U; i++) { ::memcpy(p1, p2, 9U); p1 += 18U; p2 += 9U; } } void CYSFPayload::setUplink(const std::string& callsign) { m_uplink = new unsigned char[YSF_CALLSIGN_LENGTH]; std::string uplink = callsign; uplink.resize(YSF_CALLSIGN_LENGTH, ' '); for (unsigned int i = 0U; i < YSF_CALLSIGN_LENGTH; i++) m_uplink[i] = uplink.at(i); } void CYSFPayload::setDownlink(const std::string& callsign) { m_downlink = new unsigned char[YSF_CALLSIGN_LENGTH]; std::string downlink = callsign; downlink.resize(YSF_CALLSIGN_LENGTH, ' '); for (unsigned int i = 0U; i < YSF_CALLSIGN_LENGTH; i++) m_downlink[i] = downlink.at(i); } unsigned char* CYSFPayload::getSource() { return m_source; } unsigned char* CYSFPayload::getDest() { return m_dest; } void CYSFPayload::reset() { delete[] m_source; delete[] m_dest; m_source = NULL; m_dest = NULL; }