/* * Copyright (C) 2016 by Jonathan Naylor G4KLX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "P25Control.h" #include "P25Defines.h" #include "Sync.h" #include "Log.h" #include #include const unsigned char BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U}; #define WRITE_BIT(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7]) #define READ_BIT(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7]) CP25Control::CP25Control(unsigned int id, CDisplay* display, unsigned int timeout, bool duplex, int rssiMultiplier, int rssiOffset) : m_id(id), m_display(display), m_duplex(duplex), m_rssiMultiplier(rssiMultiplier), m_rssiOffset(rssiOffset), m_queue(1000U, "P25 Control"), m_rfState(RS_RF_LISTENING), m_netState(RS_NET_IDLE), m_rfTimeout(1000U, timeout), m_netTimeout(1000U, timeout), m_rfFrames(0U), m_rfBits(0U), m_rfErrs(0U) { assert(display != NULL); } CP25Control::~CP25Control() { } bool CP25Control::writeModem(unsigned char* data, unsigned int len) { assert(data != NULL); bool sync = data[1U] == 0x01U; if (data[0U] == TAG_LOST && m_rfState == RS_RF_LISTENING) return false; if (data[0U] == TAG_LOST) { LogMessage("P25, transmission lost, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits)); m_rfState = RS_RF_LISTENING; m_rfTimeout.stop(); return false; } if (!sync && m_rfState == RS_RF_LISTENING) return false; // Put into the NID decoder unsigned char duid = 0U; // XXX if (data[0U] == TAG_HEADER) { // Regenerate Sync CSync::addP25Sync(data + 2U); // Regenerate NID // Regenerate Enc Data // Add busy bits addBusyBits(data + 2U, P25_HDR_FRAME_LENGTH_BITS, false, true); m_rfFrames = 0U; m_rfErrs = 0U; m_rfBits = 1U; m_rfTimeout.start(); if (m_duplex) { data[0U] = TAG_HEADER; data[1U] = 0x00U; writeQueueRF(data, P25_HDR_FRAME_LENGTH_BYTES + 2U); } LogMessage("P25, received RF header"); } else if (duid == P25_DUID_LDU1) { if (m_rfState == RS_RF_LISTENING) { m_rfFrames = 0U; m_rfErrs = 0U; m_rfBits = 1U; m_rfTimeout.start(); // Decode LDU1 } // Regenerate Sync CSync::addP25Sync(data + 2U); // Regenerate NID // Regenerate LDU1 Data // Regenerate Audio unsigned int errors = 0U; // XXX LogDebug("P25, LDU1 audio, errs: %u/1233", errors); m_rfBits += 1233U; m_rfErrs += errors; m_rfFrames++; // Add busy bits addBusyBits(data + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true); if (m_duplex) { data[0U] = TAG_DATA; data[1U] = 0x00U; writeQueueRF(data, P25_LDU_FRAME_LENGTH_BYTES + 2U); } if (m_rfState == RS_RF_LISTENING) { // LogMessage("P25, received RF LC from %8.8s/%4.4s to %8.8s", my1, my2, your); m_rfState = RS_RF_AUDIO; } } else if (duid == P25_DUID_LDU2) { if (m_rfState == RS_RF_LISTENING) return false; // Decode LDU2 // Regenerate Sync CSync::addP25Sync(data + 2U); // Regenerate NID // Regenerate LDU2 Data // Regenerate Audio unsigned int errors = 0U; // XXX LogDebug("P25, LDU2 audio, errs: %u/1233", errors); m_rfBits += 1233U; m_rfErrs += errors; m_rfFrames++; // Add busy bits addBusyBits(data + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true); if (m_duplex) { data[0U] = TAG_DATA; data[1U] = 0x00U; writeQueueRF(data, P25_LDU_FRAME_LENGTH_BYTES + 2U); } } else if (duid == P25_DUID_TERM_LC) { if (m_rfState == RS_RF_LISTENING) return false; // Regenerate Sync CSync::addP25Sync(data + 2U); // Regenerate NID // Regenerate LDU1 Data // Add busy bits addBusyBits(data + 2U, P25_TERMLC_FRAME_LENGTH_BITS, false, true); m_rfState = RS_RF_LISTENING; m_rfTimeout.stop(); LogMessage("P25, received RF end of transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits)); if (m_duplex) { data[0U] = TAG_EOT; data[1U] = 0x00U; writeQueueRF(data, P25_TERMLC_FRAME_LENGTH_BYTES + 2U); } } else if (duid == P25_DUID_TERM) { if (m_rfState == RS_RF_LISTENING) return false; // Regenerate Sync CSync::addP25Sync(data + 2U); // Regenerate NID // Add busy bits addBusyBits(data + 2U, P25_TERM_FRAME_LENGTH_BITS, false, true); m_rfState = RS_RF_LISTENING; m_rfTimeout.stop(); LogMessage("P25, received RF end of transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits)); if (m_duplex) { data[0U] = TAG_EOT; data[1U] = 0x00U; writeQueueRF(data, P25_TERM_FRAME_LENGTH_BYTES + 2U); } } else { return false; } return true; } unsigned int CP25Control::readModem(unsigned char* data) { assert(data != NULL); if (m_queue.isEmpty()) return 0U; unsigned char len = 0U; m_queue.getData(&len, 1U); m_queue.getData(data, len); return len; } void CP25Control::clock(unsigned int ms) { m_rfTimeout.clock(ms); m_netTimeout.clock(ms); } void CP25Control::writeQueueRF(const unsigned char* data, unsigned int length) { assert(data != NULL); if (m_rfTimeout.isRunning() && m_rfTimeout.hasExpired()) return; unsigned int space = m_queue.freeSpace(); if (space < (length + 1U)) { LogError("P25, overflow in the P25 RF queue"); return; } unsigned char len = length; m_queue.addData(&len, 1U); m_queue.addData(data, len); } void CP25Control::addBusyBits(unsigned char* data, unsigned int length, bool b1, bool b2) { assert(data != NULL); for (unsigned int i = 0U; i < length; i++) { if (i > 0U && (i % 70U) == 0U) WRITE_BIT(data, i, b1); if (i > 0U && (i % 71U) == 0U) WRITE_BIT(data, i, b2); } }