/* * Copyright (C) 2016,2017,2018 by Jonathan Naylor G4KLX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "P25Control.h" #include "P25Defines.h" #include "P25Utils.h" #include "Utils.h" #include "Sync.h" #include "Log.h" #include #include #include #include // #define DUMP_P25 const unsigned char BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U}; #define WRITE_BIT(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7]) #define READ_BIT(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7]) CP25Control::CP25Control(unsigned int nac, unsigned int id, bool selfOnly, bool uidOverride, CP25Network* network, CDisplay* display, unsigned int timeout, bool duplex, CDMRLookup* lookup, bool remoteGateway, CRSSIInterpolator* rssiMapper) : m_nac(nac), m_id(id), m_selfOnly(selfOnly), m_uidOverride(uidOverride), m_remoteGateway(remoteGateway), m_network(network), m_display(display), m_duplex(duplex), m_lookup(lookup), m_queue(1000U, "P25 Control"), m_rfState(RS_RF_LISTENING), m_netState(RS_NET_IDLE), m_rfTimeout(1000U, timeout), m_netTimeout(1000U, timeout), m_networkWatchdog(1000U, 0U, 1500U), m_rfFrames(0U), m_rfBits(0U), m_rfErrs(0U), m_netFrames(0U), m_netLost(0U), m_nid(nac), m_lastDUID(P25_DUID_TERM), m_audio(), m_rfData(), m_netData(), m_rfLSD(), m_netLSD(), m_netLDU1(NULL), m_netLDU2(NULL), m_lastIMBE(NULL), m_rfLDU(NULL), m_rfPDURaw(NULL), m_rfPDUCooked(NULL), m_rfPDUCount(0U), m_rfPDUBits(0U), m_rssiMapper(rssiMapper), m_rssi(0U), m_maxRSSI(0U), m_minRSSI(0U), m_aveRSSI(0U), m_rssiCount(0U), m_fp(NULL) { assert(display != NULL); assert(lookup != NULL); assert(rssiMapper != NULL); m_netLDU1 = new unsigned char[9U * 25U]; m_netLDU2 = new unsigned char[9U * 25U]; ::memset(m_netLDU1, 0x00U, 9U * 25U); ::memset(m_netLDU2, 0x00U, 9U * 25U); m_lastIMBE = new unsigned char[11U]; ::memcpy(m_lastIMBE, P25_NULL_IMBE, 11U); m_rfLDU = new unsigned char[P25_LDU_FRAME_LENGTH_BYTES]; ::memset(m_rfLDU, 0x00U, P25_LDU_FRAME_LENGTH_BYTES); m_rfPDURaw = new unsigned char[P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES]; ::memset(m_rfPDURaw, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES); m_rfPDUCooked = new unsigned char[P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES]; ::memset(m_rfPDUCooked, 0x00U, P25_MAX_PDU_COUNT * P25_LDU_FRAME_LENGTH_BYTES); } CP25Control::~CP25Control() { delete[] m_netLDU1; delete[] m_netLDU2; delete[] m_lastIMBE; delete[] m_rfLDU; delete[] m_rfPDURaw; delete[] m_rfPDUCooked; } bool CP25Control::writeModem(unsigned char* data, unsigned int len) { assert(data != NULL); bool sync = data[1U] == 0x01U; if (data[0U] == TAG_LOST && m_rfState == RS_RF_AUDIO) { if (m_rssi != 0U) LogMessage("P25, transmission lost, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount); else LogMessage("P25, transmission lost, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits)); if (m_netState == RS_NET_IDLE) m_display->clearP25(); writeNetwork(m_rfLDU, m_lastDUID, true); writeNetwork(data + 2U, P25_DUID_TERM, true); m_rfState = RS_RF_LISTENING; m_rfTimeout.stop(); m_rfData.reset(); #if defined(DUMP_P25) closeFile(); #endif return false; } if (data[0U] == TAG_LOST && m_rfState == RS_RF_DATA) { if (m_netState == RS_NET_IDLE) m_display->clearP25(); m_rfState = RS_RF_LISTENING; m_rfPDUCount = 0U; m_rfPDUBits = 0U; #if defined(DUMP_P25) closeFile(); #endif return false; } if (data[0U] == TAG_LOST) { m_rfState = RS_RF_LISTENING; return false; } if (!sync && m_rfState == RS_RF_LISTENING) return false; // Decode the NID bool valid = m_nid.decode(data + 2U); if (m_rfState == RS_RF_LISTENING && !valid) return false; unsigned char duid = m_nid.getDUID(); if (!valid) { switch (m_lastDUID) { case P25_DUID_HEADER: case P25_DUID_LDU2: duid = P25_DUID_LDU1; break; case P25_DUID_LDU1: duid = P25_DUID_LDU2; break; case P25_DUID_PDU: duid = P25_DUID_PDU; break; default: break; } } // Have we got RSSI bytes on the end of a P25 LDU? if (len == (P25_LDU_FRAME_LENGTH_BYTES + 4U)) { uint16_t raw = 0U; raw |= (data[218U] << 8) & 0xFF00U; raw |= (data[219U] << 0) & 0x00FFU; // Convert the raw RSSI to dBm int rssi = m_rssiMapper->interpolate(raw); LogDebug("P25, raw RSSI: %u, reported RSSI: %d dBm", raw, rssi); // RSSI is always reported as positive m_rssi = (rssi >= 0) ? rssi : -rssi; if (m_rssi > m_minRSSI) m_minRSSI = m_rssi; if (m_rssi < m_maxRSSI) m_maxRSSI = m_rssi; m_aveRSSI += m_rssi; m_rssiCount++; } if (duid == P25_DUID_LDU1) { if (m_rfState == RS_RF_LISTENING) { m_rfData.reset(); bool ret = m_rfData.decodeLDU1(data + 2U); if (!ret) { m_lastDUID = duid; return false; } unsigned int srcId = m_rfData.getSrcId(); if (m_selfOnly) { if (m_id > 99999999U) { // Check that the Config DMR-ID is bigger than 8 digits if (srcId != m_id / 100U) return false; } else if (m_id > 9999999U) { // Check that the Config DMR-ID is bigger than 7 digits if (srcId != m_id / 10U) return false; } else if (srcId != m_id) { // All other cases return false; } } if (!m_uidOverride) { bool found = m_lookup->exists(srcId); if (!found) return false; } bool grp = m_rfData.getLCF() == P25_LCF_GROUP; unsigned int dstId = m_rfData.getDstId(); std::string source = m_lookup->find(srcId); LogMessage("P25, received RF transmission from %s to %s%u", source.c_str(), grp ? "TG " : "", dstId); m_display->writeP25(source.c_str(), grp, dstId, "R"); m_rfState = RS_RF_AUDIO; m_minRSSI = m_rssi; m_maxRSSI = m_rssi; m_aveRSSI = m_rssi; m_rssiCount = 1U; createRFHeader(); writeNetwork(data + 2U, P25_DUID_HEADER, false); } else if (m_rfState == RS_RF_AUDIO) { writeNetwork(m_rfLDU, m_lastDUID, false); } if (m_rfState == RS_RF_AUDIO) { // Regenerate Sync CSync::addP25Sync(data + 2U); // Regenerate NID m_nid.encode(data + 2U, P25_DUID_LDU1); // Regenerate LDU1 Data m_rfData.encodeLDU1(data + 2U); // Regenerate the Low Speed Data m_rfLSD.process(data + 2U); // Regenerate Audio unsigned int errors = m_audio.process(data + 2U); LogDebug("P25, LDU1 audio, errs: %u/1233 (%.1f%%)", errors, float(errors) / 12.33F); m_display->writeP25BER(float(errors) / 12.33F); m_rfBits += 1233U; m_rfErrs += errors; m_rfFrames++; m_lastDUID = duid; // Add busy bits addBusyBits(data + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true); #if defined(DUMP_P25) writeFile(data + 2U, len - 2U); #endif ::memcpy(m_rfLDU, data + 2U, P25_LDU_FRAME_LENGTH_BYTES); if (m_duplex) { data[0U] = TAG_DATA; data[1U] = 0x00U; writeQueueRF(data, P25_LDU_FRAME_LENGTH_BYTES + 2U); } m_display->writeP25RSSI(m_rssi); return true; } } else if (duid == P25_DUID_LDU2) { if (m_rfState == RS_RF_AUDIO) { writeNetwork(m_rfLDU, m_lastDUID, false); // Regenerate Sync CSync::addP25Sync(data + 2U); // Regenerate NID m_nid.encode(data + 2U, P25_DUID_LDU2); // Add the dummy LDU2 data m_rfData.encodeLDU2(data + 2U); // Regenerate the Low Speed Data m_rfLSD.process(data + 2U); // Regenerate Audio unsigned int errors = m_audio.process(data + 2U); LogDebug("P25, LDU2 audio, errs: %u/1233 (%.1f%%)", errors, float(errors) / 12.33F); m_display->writeP25BER(float(errors) / 12.33F); m_rfBits += 1233U; m_rfErrs += errors; m_rfFrames++; m_lastDUID = duid; // Add busy bits addBusyBits(data + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true); #if defined(DUMP_P25) writeFile(data + 2U, len - 2U); #endif ::memcpy(m_rfLDU, data + 2U, P25_LDU_FRAME_LENGTH_BYTES); if (m_duplex) { data[0U] = TAG_DATA; data[1U] = 0x00U; writeQueueRF(data, P25_LDU_FRAME_LENGTH_BYTES + 2U); } m_display->writeP25RSSI(m_rssi); return true; } } else if (duid == P25_DUID_TERM || duid == P25_DUID_TERM_LC) { if (m_rfState == RS_RF_AUDIO) { writeNetwork(m_rfLDU, m_lastDUID, true); ::memset(data + 2U, 0x00U, P25_TERM_FRAME_LENGTH_BYTES); // Regenerate Sync CSync::addP25Sync(data + 2U); // Regenerate NID m_nid.encode(data + 2U, P25_DUID_TERM); // Add busy bits addBusyBits(data + 2U, P25_TERM_FRAME_LENGTH_BITS, false, true); m_rfState = RS_RF_LISTENING; m_rfTimeout.stop(); m_rfData.reset(); m_lastDUID = duid; if (m_rssi != 0U) LogMessage("P25, received RF end of transmission, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount); else LogMessage("P25, received RF end of transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits)); m_display->clearP25(); #if defined(DUMP_P25) closeFile(); #endif writeNetwork(data + 2U, P25_DUID_TERM, true); if (m_duplex) { data[0U] = TAG_EOT; data[1U] = 0x00U; writeQueueRF(data, P25_TERM_FRAME_LENGTH_BYTES + 2U); } } } else if (duid == P25_DUID_PDU) { if (m_rfState != RS_RF_DATA) { m_rfPDUCount = 0U; m_rfPDUBits = 0U; m_rfState = RS_RF_DATA; } unsigned int start = m_rfPDUCount * P25_LDU_FRAME_LENGTH_BITS; unsigned char buffer[P25_LDU_FRAME_LENGTH_BYTES]; unsigned int bits = CP25Utils::decode(data + 2U, buffer, start, start + P25_LDU_FRAME_LENGTH_BITS); for (unsigned int i = 0U; i < bits; i++, m_rfPDUBits++) { bool b = READ_BIT(buffer, i); WRITE_BIT(m_rfPDUCooked, m_rfPDUBits, b); } ::memcpy(m_rfPDURaw + m_rfPDUCount * P25_LDU_FRAME_LENGTH_BYTES, data + 2U, P25_LDU_FRAME_LENGTH_BYTES); m_rfPDUCount++; LogMessage("P25, received %u (%u) bits in %u LDUs", m_rfPDUBits, m_rfPDUBits - P25_SYNC_BITS_LENGTH - P25_NID_LENGTH_BITS, m_rfPDUCount); LogMessage("P25, PDU received"); CUtils::dump("P25, PDU data", data + 2U, P25_LDU_FRAME_LENGTH_BYTES); } return false; } unsigned int CP25Control::readModem(unsigned char* data) { assert(data != NULL); if (m_queue.isEmpty()) return 0U; unsigned char len = 0U; m_queue.getData(&len, 1U); m_queue.getData(data, len); return len; } void CP25Control::writeNetwork() { unsigned char data[100U]; unsigned int length = m_network->read(data, 100U); if (length == 0U) return; if (m_rfState != RS_RF_LISTENING && m_netState == RS_NET_IDLE) return; m_networkWatchdog.start(); switch (data[0U]) { case 0x62U: ::memcpy(m_netLDU1 + 0U, data, 22U); checkNetLDU2(); break; case 0x63U: ::memcpy(m_netLDU1 + 25U, data, 14U); checkNetLDU2(); break; case 0x64U: ::memcpy(m_netLDU1 + 50U, data, 17U); checkNetLDU2(); break; case 0x65U: ::memcpy(m_netLDU1 + 75U, data, 17U); checkNetLDU2(); break; case 0x66U: ::memcpy(m_netLDU1 + 100U, data, 17U); checkNetLDU2(); break; case 0x67U: ::memcpy(m_netLDU1 + 125U, data, 17U); checkNetLDU2(); break; case 0x68U: ::memcpy(m_netLDU1 + 150U, data, 17U); checkNetLDU2(); break; case 0x69U: ::memcpy(m_netLDU1 + 175U, data, 17U); checkNetLDU2(); break; case 0x6AU: ::memcpy(m_netLDU1 + 200U, data, 16U); checkNetLDU2(); if (m_netState != RS_NET_IDLE) createNetLDU1(); break; case 0x6BU: ::memcpy(m_netLDU2 + 0U, data, 22U); checkNetLDU1(); break; case 0x6CU: ::memcpy(m_netLDU2 + 25U, data, 14U); checkNetLDU1(); break; case 0x6DU: ::memcpy(m_netLDU2 + 50U, data, 17U); checkNetLDU1(); break; case 0x6EU: ::memcpy(m_netLDU2 + 75U, data, 17U); checkNetLDU1(); break; case 0x6FU: ::memcpy(m_netLDU2 + 100U, data, 17U); checkNetLDU1(); break; case 0x70U: ::memcpy(m_netLDU2 + 125U, data, 17U); checkNetLDU1(); break; case 0x71U: ::memcpy(m_netLDU2 + 150U, data, 17U); checkNetLDU1(); break; case 0x72U: ::memcpy(m_netLDU2 + 175U, data, 17U); checkNetLDU1(); break; case 0x73U: ::memcpy(m_netLDU2 + 200U, data, 16U); if (m_netState == RS_NET_IDLE) { createNetHeader(); createNetLDU1(); } else { checkNetLDU1(); } createNetLDU2(); break; case 0x80U: createNetTerminator(); break; default: break; } } void CP25Control::clock(unsigned int ms) { if (m_network != NULL) writeNetwork(); m_rfTimeout.clock(ms); m_netTimeout.clock(ms); if (m_netState == RS_NET_AUDIO) { m_networkWatchdog.clock(ms); if (m_networkWatchdog.hasExpired()) { LogMessage("P25, network watchdog has expired, %.1f seconds, %u%% packet loss", float(m_netFrames) / 50.0F, (m_netLost * 100U) / m_netFrames); m_display->clearP25(); m_networkWatchdog.stop(); m_netState = RS_NET_IDLE; m_netData.reset(); m_netTimeout.stop(); } } } void CP25Control::writeQueueRF(const unsigned char* data, unsigned int length) { assert(data != NULL); if (m_rfTimeout.isRunning() && m_rfTimeout.hasExpired()) return; unsigned int space = m_queue.freeSpace(); if (space < (length + 1U)) { LogError("P25, overflow in the P25 RF queue"); return; } unsigned char len = length; m_queue.addData(&len, 1U); m_queue.addData(data, len); } void CP25Control::writeQueueNet(const unsigned char* data, unsigned int length) { assert(data != NULL); if (m_netTimeout.isRunning() && m_netTimeout.hasExpired()) return; unsigned int space = m_queue.freeSpace(); if (space < (length + 1U)) { LogError("P25, overflow in the P25 RF queue"); return; } unsigned char len = length; m_queue.addData(&len, 1U); m_queue.addData(data, len); } void CP25Control::writeNetwork(const unsigned char *data, unsigned char type, bool end) { assert(data != NULL); if (m_network == NULL) return; if (m_rfTimeout.isRunning() && m_rfTimeout.hasExpired()) return; switch (type) { case P25_DUID_LDU1: m_network->writeLDU1(data, m_rfData, m_rfLSD, end); break; case P25_DUID_LDU2: m_network->writeLDU2(data, m_rfData, m_rfLSD, end); break; default: break; } } void CP25Control::addBusyBits(unsigned char* data, unsigned int length, bool b1, bool b2) { assert(data != NULL); for (unsigned int ss0Pos = P25_SS0_START; ss0Pos < length; ss0Pos += P25_SS_INCREMENT) { unsigned int ss1Pos = ss0Pos + 1U; WRITE_BIT(data, ss0Pos, b1); WRITE_BIT(data, ss1Pos, b2); } } void CP25Control::checkNetLDU1() { if (m_netState == RS_NET_IDLE) return; // Check for an unflushed LDU1 if (m_netLDU1[0U] != 0x00U || m_netLDU1[25U] != 0x00U || m_netLDU1[50U] != 0x00U || m_netLDU1[75U] != 0x00U || m_netLDU1[100U] != 0x00U || m_netLDU1[125U] != 0x00U || m_netLDU1[150U] != 0x00U || m_netLDU1[175U] != 0x00U || m_netLDU1[200U] != 0x00U) createNetLDU1(); } void CP25Control::checkNetLDU2() { if (m_netState == RS_NET_IDLE) return; // Check for an unflushed LDU1 if (m_netLDU2[0U] != 0x00U || m_netLDU2[25U] != 0x00U || m_netLDU2[50U] != 0x00U || m_netLDU2[75U] != 0x00U || m_netLDU2[100U] != 0x00U || m_netLDU2[125U] != 0x00U || m_netLDU2[150U] != 0x00U || m_netLDU2[175U] != 0x00U || m_netLDU2[200U] != 0x00U) createNetLDU2(); } void CP25Control::insertMissingAudio(unsigned char* data) { if (data[0U] == 0x00U) { ::memcpy(data + 10U, m_lastIMBE, 11U); m_netLost++; } else { ::memcpy(m_lastIMBE, data + 10U, 11U); } if (data[25U] == 0x00U) { ::memcpy(data + 26U, m_lastIMBE, 11U); m_netLost++; } else { ::memcpy(m_lastIMBE, data + 26U, 11U); } if (data[50U] == 0x00U) { ::memcpy(data + 55U, m_lastIMBE, 11U); m_netLost++; } else { ::memcpy(m_lastIMBE, data + 55U, 11U); } if (data[75U] == 0x00U) { ::memcpy(data + 80U, m_lastIMBE, 11U); m_netLost++; } else { ::memcpy(m_lastIMBE, data + 80U, 11U); } if (data[100U] == 0x00U) { ::memcpy(data + 105U, m_lastIMBE, 11U); m_netLost++; } else { ::memcpy(m_lastIMBE, data + 105U, 11U); } if (data[125U] == 0x00U) { ::memcpy(data + 130U, m_lastIMBE, 11U); m_netLost++; } else { ::memcpy(m_lastIMBE, data + 130U, 11U); } if (data[150U] == 0x00U) { ::memcpy(data + 155U, m_lastIMBE, 11U); m_netLost++; } else { ::memcpy(m_lastIMBE, data + 155U, 11U); } if (data[175U] == 0x00U) { ::memcpy(data + 180U, m_lastIMBE, 11U); m_netLost++; } else { ::memcpy(m_lastIMBE, data + 180U, 11U); } if (data[200U] == 0x00U) { ::memcpy(data + 204U, m_lastIMBE, 11U); m_netLost++; } else { ::memcpy(m_lastIMBE, data + 204U, 11U); } } void CP25Control::createRFHeader() { unsigned char buffer[P25_HDR_FRAME_LENGTH_BYTES + 2U]; ::memset(buffer, 0x00U, P25_HDR_FRAME_LENGTH_BYTES + 2U); buffer[0U] = TAG_HEADER; buffer[1U] = 0x00U; // Add the sync CSync::addP25Sync(buffer + 2U); // Add the NID m_nid.encode(buffer + 2U, P25_DUID_HEADER); // Add the dummy header m_rfData.encodeHeader(buffer + 2U); // Add busy bits addBusyBits(buffer + 2U, P25_HDR_FRAME_LENGTH_BITS, false, true); m_rfFrames = 0U; m_rfErrs = 0U; m_rfBits = 1U; m_rfTimeout.start(); m_lastDUID = P25_DUID_HEADER; ::memset(m_rfLDU, 0x00U, P25_LDU_FRAME_LENGTH_BYTES); #if defined(DUMP_P25) openFile(); writeFile(buffer + 2U, buffer - 2U); #endif if (m_duplex) { buffer[0U] = TAG_HEADER; buffer[1U] = 0x00U; writeQueueRF(buffer, P25_HDR_FRAME_LENGTH_BYTES + 2U); } } void CP25Control::createNetHeader() { unsigned char lcf = m_netLDU1[51U]; unsigned char mfId = m_netLDU1[52U]; unsigned int dstId = (m_netLDU1[76U] << 16) + (m_netLDU1[77U] << 8) + m_netLDU1[78U]; unsigned int srcId = (m_netLDU1[101U] << 16) + (m_netLDU1[102U] << 8) + m_netLDU1[103U]; unsigned char algId = m_netLDU2[126U]; unsigned int kId = (m_netLDU2[127U] << 8) + m_netLDU2[128U]; unsigned char mi[P25_MI_LENGTH_BYTES]; ::memcpy(mi + 0U, m_netLDU2 + 51U, 3U); ::memcpy(mi + 3U, m_netLDU2 + 76U, 3U); ::memcpy(mi + 6U, m_netLDU2 + 101U, 3U); m_netData.reset(); m_netData.setMI(mi); m_netData.setAlgId(algId); m_netData.setKId(kId); m_netData.setLCF(lcf); m_netData.setMFId(mfId); m_netData.setSrcId(srcId); m_netData.setDstId(dstId); std::string source = m_lookup->find(srcId); LogMessage("P25, received network transmission from %s to %s%u", source.c_str(), lcf == P25_LCF_GROUP ? "TG " : "", dstId); m_display->writeP25(source.c_str(), lcf == P25_LCF_GROUP, dstId, "N"); m_netState = RS_NET_AUDIO; m_netTimeout.start(); m_netFrames = 0U; m_netLost = 0U; unsigned char buffer[P25_HDR_FRAME_LENGTH_BYTES + 2U]; ::memset(buffer, 0x00U, P25_HDR_FRAME_LENGTH_BYTES + 2U); buffer[0U] = TAG_HEADER; buffer[1U] = 0x00U; // Add the sync CSync::addP25Sync(buffer + 2U); // Add the NID m_nid.encode(buffer + 2U, P25_DUID_HEADER); // Add the dummy header m_netData.encodeHeader(buffer + 2U); // Add busy bits if (m_remoteGateway) addBusyBits(buffer + 2U, P25_HDR_FRAME_LENGTH_BITS, false, false); else addBusyBits(buffer + 2U, P25_HDR_FRAME_LENGTH_BITS, false, true); writeQueueNet(buffer, P25_HDR_FRAME_LENGTH_BYTES + 2U); } void CP25Control::createNetLDU1() { insertMissingAudio(m_netLDU1); unsigned char buffer[P25_LDU_FRAME_LENGTH_BYTES + 2U]; ::memset(buffer, 0x00U, P25_LDU_FRAME_LENGTH_BYTES + 2U); buffer[0U] = TAG_DATA; buffer[1U] = 0x00U; // Add the sync CSync::addP25Sync(buffer + 2U); // Add the NID m_nid.encode(buffer + 2U, P25_DUID_LDU1); // Add the LDU1 data m_netData.encodeLDU1(buffer + 2U); // Add the Audio m_audio.encode(buffer + 2U, m_netLDU1 + 10U, 0U); m_audio.encode(buffer + 2U, m_netLDU1 + 26U, 1U); m_audio.encode(buffer + 2U, m_netLDU1 + 55U, 2U); m_audio.encode(buffer + 2U, m_netLDU1 + 80U, 3U); m_audio.encode(buffer + 2U, m_netLDU1 + 105U, 4U); m_audio.encode(buffer + 2U, m_netLDU1 + 130U, 5U); m_audio.encode(buffer + 2U, m_netLDU1 + 155U, 6U); m_audio.encode(buffer + 2U, m_netLDU1 + 180U, 7U); m_audio.encode(buffer + 2U, m_netLDU1 + 204U, 8U); // Add the Low Speed Data m_netLSD.setLSD1(m_netLDU1[201U]); m_netLSD.setLSD2(m_netLDU1[202U]); m_netLSD.encode(buffer + 2U); // Add busy bits if (m_remoteGateway) addBusyBits(buffer + 2U, P25_LDU_FRAME_LENGTH_BITS, false, false); else addBusyBits(buffer + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true); writeQueueNet(buffer, P25_LDU_FRAME_LENGTH_BYTES + 2U); ::memset(m_netLDU1, 0x00U, 9U * 25U); m_netFrames += 9U; } void CP25Control::createNetLDU2() { insertMissingAudio(m_netLDU2); unsigned char buffer[P25_LDU_FRAME_LENGTH_BYTES + 2U]; ::memset(buffer, 0x00U, P25_LDU_FRAME_LENGTH_BYTES + 2U); buffer[0U] = TAG_DATA; buffer[1U] = 0x00U; // Add the sync CSync::addP25Sync(buffer + 2U); // Add the NID m_nid.encode(buffer + 2U, P25_DUID_LDU2); // Add the dummy LDU2 data m_netData.encodeLDU2(buffer + 2U); // Add the Audio m_audio.encode(buffer + 2U, m_netLDU2 + 10U, 0U); m_audio.encode(buffer + 2U, m_netLDU2 + 26U, 1U); m_audio.encode(buffer + 2U, m_netLDU2 + 55U, 2U); m_audio.encode(buffer + 2U, m_netLDU2 + 80U, 3U); m_audio.encode(buffer + 2U, m_netLDU2 + 105U, 4U); m_audio.encode(buffer + 2U, m_netLDU2 + 130U, 5U); m_audio.encode(buffer + 2U, m_netLDU2 + 155U, 6U); m_audio.encode(buffer + 2U, m_netLDU2 + 180U, 7U); m_audio.encode(buffer + 2U, m_netLDU2 + 204U, 8U); // Add the Low Speed Data m_netLSD.setLSD1(m_netLDU2[201U]); m_netLSD.setLSD2(m_netLDU2[202U]); m_netLSD.encode(buffer + 2U); // Add busy bits if (m_remoteGateway) addBusyBits(buffer + 2U, P25_LDU_FRAME_LENGTH_BITS, false, false); else addBusyBits(buffer + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true); writeQueueNet(buffer, P25_LDU_FRAME_LENGTH_BYTES + 2U); ::memset(m_netLDU2, 0x00U, 9U * 25U); m_netFrames += 9U; } void CP25Control::createNetTerminator() { unsigned char buffer[P25_TERM_FRAME_LENGTH_BYTES + 2U]; ::memset(buffer, 0x00U, P25_TERM_FRAME_LENGTH_BYTES + 2U); buffer[0U] = TAG_EOT; buffer[1U] = 0x00U; // Add the sync CSync::addP25Sync(buffer + 2U); // Add the NID m_nid.encode(buffer + 2U, P25_DUID_TERM); // Add busy bits if (m_remoteGateway) addBusyBits(buffer + 2U, P25_TERM_FRAME_LENGTH_BITS, false, false); else addBusyBits(buffer + 2U, P25_TERM_FRAME_LENGTH_BITS, false, true); writeQueueNet(buffer, P25_TERM_FRAME_LENGTH_BYTES + 2U); LogMessage("P25, network end of transmission, %.1f seconds, %u%% packet loss", float(m_netFrames) / 50.0F, (m_netLost * 100U) / m_netFrames); m_display->clearP25(); m_netTimeout.stop(); m_networkWatchdog.stop(); m_netData.reset(); m_netState = RS_NET_IDLE; } bool CP25Control::openFile() { if (m_fp != NULL) return true; time_t t; ::time(&t); struct tm* tm = ::localtime(&t); char name[100U]; ::sprintf(name, "P25_%04d%02d%02d_%02d%02d%02d.ambe", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); m_fp = ::fopen(name, "wb"); if (m_fp == NULL) return false; ::fwrite("P25", 1U, 3U, m_fp); return true; } bool CP25Control::writeFile(const unsigned char* data, unsigned char length) { if (m_fp == NULL) return false; ::fwrite(&length, 1U, 1U, m_fp); ::fwrite(data, 1U, length, m_fp); return true; } void CP25Control::closeFile() { if (m_fp != NULL) { ::fclose(m_fp); m_fp = NULL; } }