/* * Copyright (C) 2016 by Jonathan Naylor G4KLX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "RS241213.h" #include #include const unsigned char ENCODE_MATRIX[12U][24U] = { {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 062, 044, 003, 025, 014, 016, 027, 003, 053, 004, 036, 047}, {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 011, 012, 011, 011, 016, 064, 067, 055, 001, 076, 026, 073}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 003, 001, 005, 075, 014, 006, 020, 044, 066, 006, 070, 066}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 021, 070, 027, 045, 016, 067, 023, 064, 073, 033, 044, 021}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 030, 022, 003, 075, 015, 015, 033, 015, 051, 003, 053, 050}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 001, 041, 027, 056, 076, 064, 021, 053, 004, 025, 001, 012}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 061, 076, 021, 055, 076, 001, 063, 035, 030, 013, 064, 070}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 024, 022, 071, 056, 021, 035, 073, 042, 057, 074, 043, 076}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 072, 042, 005, 020, 043, 047, 033, 056, 001, 016, 013, 076}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 072, 014, 065, 054, 035, 025, 041, 016, 015, 040, 071, 026}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 073, 065, 036, 061, 042, 022, 017, 004, 044, 020, 025, 005}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 071, 005, 055, 003, 071, 034, 060, 011, 074, 002, 041, 050}}; const unsigned int rsGFexp[64] = { 1, 2, 4, 8, 16, 32, 3, 6, 12, 24, 48, 35, 5, 10, 20, 40, 19, 38, 15, 30, 60, 59, 53, 41, 17, 34, 7, 14, 28, 56, 51, 37, 9, 18, 36, 11, 22, 44, 27, 54, 47, 29, 58, 55, 45, 25, 50, 39, 13, 26, 52, 43, 21, 42, 23, 46, 31, 62, 63, 61, 57, 49, 33, 0 }; const unsigned int rsGFlog[64] = { 63, 0, 1, 6, 2, 12, 7, 26, 3, 32, 13, 35, 8, 48, 27, 18, 4, 24, 33, 16, 14, 52, 36, 54, 9, 45, 49, 38, 28, 41, 19, 56, 5, 62, 25, 11, 34, 31, 17, 47, 15, 23, 53, 51, 37, 44, 55, 40, 10, 61, 46, 30, 50, 22, 39, 43, 29, 60, 42, 21, 20, 59, 57, 58 }; const unsigned char BIT_MASK_TABLE[] = { 0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U }; #define WRITE_BIT(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7]) #define READ_BIT(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7]) static unsigned char bin2Hex(const unsigned char* input, unsigned int offset) { unsigned char output = 0x00U; output |= READ_BIT(input, offset + 0U) ? 0x20U : 0x00U; output |= READ_BIT(input, offset + 1U) ? 0x10U : 0x00U; output |= READ_BIT(input, offset + 2U) ? 0x08U : 0x00U; output |= READ_BIT(input, offset + 3U) ? 0x04U : 0x00U; output |= READ_BIT(input, offset + 4U) ? 0x02U : 0x00U; output |= READ_BIT(input, offset + 5U) ? 0x01U : 0x00U; return output; } static void hex2Bin(unsigned char input, unsigned char* output, unsigned int offset) { WRITE_BIT(output, offset + 0U, input & 0x20U); WRITE_BIT(output, offset + 1U, input & 0x10U); WRITE_BIT(output, offset + 2U, input & 0x08U); WRITE_BIT(output, offset + 3U, input & 0x04U); WRITE_BIT(output, offset + 4U, input & 0x02U); WRITE_BIT(output, offset + 5U, input & 0x01U); } CRS241213::CRS241213() { } CRS241213::~CRS241213() { } bool CRS241213::decode(unsigned char* data) { assert(data != NULL); unsigned char HB[24U]; unsigned int offset = 0U; for (unsigned int i = 0U; i < 24U; i++, offset += 6U) HB[i] = bin2Hex(data, offset); //RS (63,63-nroots,nroots+1) decoder where nroots = number of parity bits // rsDec(8, 39) rsDec(16, 27) rsDec(12, 39) const int nroots = 12; int lambda[18];//Err+Eras Locator poly int S[17];//syndrome poly int b[18]; int t[18]; int omega[18]; int root[17]; int reg[18]; int locn[17]; int i, j, count, r, el, SynError, DiscrR, q, DegOmega, tmp, num1, num2, den, DegLambda; //form the syndromes; i.e., evaluate HB(x) at roots of g(x) for (i = 0; i <= nroots - 1; i++) { S[i] = HB[0]; } for (j = 1; j <= 23; j++) { // XXX was 62 for (i = 0; i <= nroots - 1; i++) { if (S[i] == 0) { S[i] = HB[j]; } else { S[i] = HB[j] ^ rsGFexp[(rsGFlog[S[i]] + i + 1) % 63]; } } } //convert syndromes to index form, checking for nonzero condition SynError = 0; for (i = 0; i <= nroots - 1; i++) { SynError = SynError | S[i]; S[i] = rsGFlog[S[i]]; } if (SynError == 0) { //if syndrome is zero, rsData[] is a codeword and there are //no errors to correct. So return rsData[] unmodified count = 0; return true; } for (i = 1; i <= nroots; i++) { lambda[i] = 0; } lambda[0] = 1; for (i = 0; i <= nroots; i++) { b[i] = rsGFlog[lambda[i]]; } //begin Berlekamp-Massey algorithm to determine error+erasure //locator polynomial r = 0; el = 0; while (r < nroots) { //r is the step number r = r + 1; //compute discrepancy at the r-th step in poly-form DiscrR = 0; for (i = 0; i <= r - 1; i++) { if ((lambda[i] != 0) && (S[r - i - 1] != 63)) { DiscrR = DiscrR ^ rsGFexp[(rsGFlog[lambda[i]] + S[r - i - 1]) % 63]; } } DiscrR = rsGFlog[DiscrR];//index form if (DiscrR == 63) { //shift elements upward one step for (i = nroots; i >= 1; i += -1) { b[i] = b[i - 1]; } b[0] = 63; } else { //t(x) <-- lambda(x) - DiscrR*x*b(x) t[0] = lambda[0]; for (i = 0; i <= nroots - 1; i++) { if (b[i] != 63) { t[i + 1] = lambda[i + 1] ^ rsGFexp[(DiscrR + b[i]) % 63]; } else { t[i + 1] = lambda[i + 1]; } } if (2 * el <= r - 1) { el = r - el; //b(x) <-- inv(DiscrR) * lambda(x) for (i = 0; i <= nroots; i++) { if (lambda[i]) { b[i] = (rsGFlog[lambda[i]] - DiscrR + 63) % 63; } else { b[i] = 63; } } } else { //shift elements upward one step for (i = nroots; i >= 1; i += -1) { b[i] = b[i - 1]; } b[0] = 63; } for (i = 0; i <= nroots; i++) { lambda[i] = t[i]; } } } /* end while() */ //convert lambda to index form and compute deg(lambda(x)) DegLambda = 0; for (i = 0; i <= nroots; i++) { lambda[i] = rsGFlog[lambda[i]]; if (lambda[i] != 63) { DegLambda = i; } } //Find roots of the error+erasure locator polynomial by Chien search for (i = 1; i <= nroots; i++) { reg[i] = lambda[i]; } count = 0;//number of roots of lambda(x) for (i = 1; i <= 63; i++) { q = 1;//lambda[0] is always 0 for (j = DegLambda; j >= 1; j += -1) { if (reg[j] != 63) { reg[j] = (reg[j] + j) % 63; q = q ^ rsGFexp[reg[j]]; } } if (q == 0) { //it is a root //store root (index-form) and error location number root[count] = i; locn[count] = i - 40; //if wehave max possible roots, abort search to save time count = count + 1; if (count == DegLambda) { break; } } } if (DegLambda != count) { //deg(lambda) unequal to number of roots => uncorrectable error detected return false; } //compute err+eras evaluator poly omega(x) // = s(x)*lambda(x) (modulo x**nroots). in index form. Also find deg(omega). DegOmega = 0; for (i = 0; i <= nroots - 1; i++) { tmp = 0; if (DegLambda < i) { j = DegLambda; } else { j = i; } for ( /* j = j */; j >= 0; j += -1) { if ((S[i - j] != 63) && (lambda[j] != 63)) { tmp = tmp ^ rsGFexp[(S[i - j] + lambda[j]) % 63]; } } if (tmp) { DegOmega = i; } omega[i] = rsGFlog[tmp]; } omega[nroots] = 63; //compute error values in poly-form: // num1 = omega(inv(X(l))) // num2 = inv(X(l))**(FCR - 1) // den = lambda_pr(inv(X(l))) for (j = count - 1; j >= 0; j += -1) { num1 = 0; for (i = DegOmega; i >= 0; i += -1) { if (omega[i] != 63) { num1 = num1 ^ rsGFexp[(omega[i] + i * root[j]) % 63]; } } num2 = rsGFexp[0]; den = 0; // lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] if (DegLambda < nroots) { i = DegLambda; } else { i = nroots; } for (i = i & ~1; i >= 0; i += -2) { if (lambda[i + 1] != 63) { den = den ^ rsGFexp[(lambda[i + 1] + i * root[j]) % 63]; } } if (den == 0) { return false; } // apply error to data if (num1 != 0) { if(locn[j] < 24) HB[locn[j]] = HB[locn[j]] ^ (rsGFexp[(rsGFlog[num1] + rsGFlog[num2] + 63 - rsGFlog[den]) % 63]); } } offset = 0U; for (unsigned int i = 0U; i < 12U; i++, offset += 6U) hex2Bin(HB[i], data, offset); return true; } void CRS241213::encode(unsigned char* data) { assert(data != NULL); unsigned char codeword[24U]; for (unsigned int i = 0U; i < 24U; i++) { codeword[i] = 0x00U; unsigned int offset = 0U; for (unsigned int j = 0U; j < 12U; j++, offset += 6U) { unsigned char hexbit = bin2Hex(data, offset); codeword[i] ^= gf6Mult(hexbit, ENCODE_MATRIX[j][i]); } } unsigned int offset = 0U; for (unsigned int i = 0U; i < 24U; i++, offset += 6U) hex2Bin(codeword[i], data, offset); } // GF(2 ^ 6) multiply(for Reed - Solomon encoder) unsigned char CRS241213::gf6Mult(unsigned char a, unsigned char b) const { unsigned char p = 0x00U; for (unsigned int i = 0U; i < 6U; i++) { if ((b & 0x01U) == 0x01U) p ^= a; a <<= 1; if ((a & 0x40U) == 0x40U) a ^= 0x43U; // primitive polynomial : x ^ 6 + x + 1 b >>= 1; } return p; }