2016-09-27 17:36:08 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2016 by Jonathan Naylor G4KLX
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "RS241213.h"
|
|
|
|
|
|
|
|
#include <cstdio>
|
|
|
|
#include <cassert>
|
|
|
|
|
|
|
|
const unsigned char ENCODE_MATRIX[12U][24U] = {
|
|
|
|
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 062, 044, 003, 025, 014, 016, 027, 003, 053, 004, 036, 047},
|
|
|
|
{0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 011, 012, 011, 011, 016, 064, 067, 055, 001, 076, 026, 073},
|
|
|
|
{0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 003, 001, 005, 075, 014, 006, 020, 044, 066, 006, 070, 066},
|
|
|
|
{0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 021, 070, 027, 045, 016, 067, 023, 064, 073, 033, 044, 021},
|
|
|
|
{0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 030, 022, 003, 075, 015, 015, 033, 015, 051, 003, 053, 050},
|
|
|
|
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 001, 041, 027, 056, 076, 064, 021, 053, 004, 025, 001, 012},
|
|
|
|
{0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 061, 076, 021, 055, 076, 001, 063, 035, 030, 013, 064, 070},
|
|
|
|
{0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 024, 022, 071, 056, 021, 035, 073, 042, 057, 074, 043, 076},
|
|
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 072, 042, 005, 020, 043, 047, 033, 056, 001, 016, 013, 076},
|
|
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 072, 014, 065, 054, 035, 025, 041, 016, 015, 040, 071, 026},
|
|
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 073, 065, 036, 061, 042, 022, 017, 004, 044, 020, 025, 005},
|
|
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 071, 005, 055, 003, 071, 034, 060, 011, 074, 002, 041, 050}};
|
|
|
|
|
|
|
|
const unsigned int rsGFexp[64] = {
|
|
|
|
1, 2, 4, 8, 16, 32, 3, 6, 12, 24, 48, 35, 5, 10, 20, 40,
|
|
|
|
19, 38, 15, 30, 60, 59, 53, 41, 17, 34, 7, 14, 28, 56, 51, 37,
|
|
|
|
9, 18, 36, 11, 22, 44, 27, 54, 47, 29, 58, 55, 45, 25, 50, 39,
|
|
|
|
13, 26, 52, 43, 21, 42, 23, 46, 31, 62, 63, 61, 57, 49, 33, 0 };
|
|
|
|
|
|
|
|
const unsigned int rsGFlog[64] = {
|
|
|
|
63, 0, 1, 6, 2, 12, 7, 26, 3, 32, 13, 35, 8, 48, 27, 18,
|
|
|
|
4, 24, 33, 16, 14, 52, 36, 54, 9, 45, 49, 38, 28, 41, 19, 56,
|
|
|
|
5, 62, 25, 11, 34, 31, 17, 47, 15, 23, 53, 51, 37, 44, 55, 40,
|
|
|
|
10, 61, 46, 30, 50, 22, 39, 43, 29, 60, 42, 21, 20, 59, 57, 58 };
|
|
|
|
|
|
|
|
const unsigned char BIT_MASK_TABLE[] = { 0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U };
|
|
|
|
|
|
|
|
#define WRITE_BIT(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7])
|
|
|
|
#define READ_BIT(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7])
|
|
|
|
|
|
|
|
static unsigned char bin2Hex(const unsigned char* input, unsigned int offset)
|
|
|
|
{
|
|
|
|
unsigned char output = 0x00U;
|
|
|
|
|
|
|
|
output |= READ_BIT(input, offset + 0U) ? 0x20U : 0x00U;
|
|
|
|
output |= READ_BIT(input, offset + 1U) ? 0x10U : 0x00U;
|
|
|
|
output |= READ_BIT(input, offset + 2U) ? 0x08U : 0x00U;
|
|
|
|
output |= READ_BIT(input, offset + 3U) ? 0x04U : 0x00U;
|
|
|
|
output |= READ_BIT(input, offset + 4U) ? 0x02U : 0x00U;
|
|
|
|
output |= READ_BIT(input, offset + 5U) ? 0x01U : 0x00U;
|
|
|
|
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hex2Bin(unsigned char input, unsigned char* output, unsigned int offset)
|
|
|
|
{
|
|
|
|
WRITE_BIT(output, offset + 0U, input & 0x20U);
|
|
|
|
WRITE_BIT(output, offset + 1U, input & 0x10U);
|
|
|
|
WRITE_BIT(output, offset + 2U, input & 0x08U);
|
|
|
|
WRITE_BIT(output, offset + 3U, input & 0x04U);
|
|
|
|
WRITE_BIT(output, offset + 4U, input & 0x02U);
|
|
|
|
WRITE_BIT(output, offset + 5U, input & 0x01U);
|
|
|
|
}
|
|
|
|
|
|
|
|
CRS241213::CRS241213()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
CRS241213::~CRS241213()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CRS241213::decode(unsigned char* data)
|
|
|
|
{
|
|
|
|
assert(data != NULL);
|
|
|
|
|
|
|
|
unsigned char HB[24U];
|
|
|
|
|
|
|
|
unsigned int offset = 0U;
|
|
|
|
for (unsigned int i = 0U; i < 24U; i++, offset += 6U)
|
|
|
|
HB[i] = bin2Hex(data, offset);
|
|
|
|
|
|
|
|
//RS (63,63-nroots,nroots+1) decoder where nroots = number of parity bits
|
|
|
|
// rsDec(8, 39) rsDec(16, 27) rsDec(12, 39)
|
|
|
|
|
|
|
|
const int nroots = 12;
|
|
|
|
int lambda[18];//Err+Eras Locator poly
|
|
|
|
int S[17];//syndrome poly
|
|
|
|
int b[18];
|
|
|
|
int t[18];
|
|
|
|
int omega[18];
|
|
|
|
int root[17];
|
|
|
|
int reg[18];
|
|
|
|
int locn[17];
|
|
|
|
|
|
|
|
int i, j, count, r, el, SynError, DiscrR, q, DegOmega, tmp, num1, num2, den, DegLambda;
|
|
|
|
|
|
|
|
//form the syndromes; i.e., evaluate HB(x) at roots of g(x)
|
|
|
|
for (i = 0; i <= nroots - 1; i++) {
|
|
|
|
S[i] = HB[0];
|
|
|
|
}
|
|
|
|
|
2016-09-28 08:26:23 +00:00
|
|
|
for (j = 1; j <= 23; j++) { // XXX was 62
|
2016-09-27 17:36:08 +00:00
|
|
|
for (i = 0; i <= nroots - 1; i++) {
|
|
|
|
if (S[i] == 0) {
|
|
|
|
S[i] = HB[j];
|
|
|
|
} else {
|
|
|
|
S[i] = HB[j] ^ rsGFexp[(rsGFlog[S[i]] + i + 1) % 63];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//convert syndromes to index form, checking for nonzero condition
|
|
|
|
SynError = 0;
|
|
|
|
|
|
|
|
for (i = 0; i <= nroots - 1; i++) {
|
|
|
|
SynError = SynError | S[i];
|
|
|
|
S[i] = rsGFlog[S[i]];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (SynError == 0) {
|
|
|
|
//if syndrome is zero, rsData[] is a codeword and there are
|
|
|
|
//no errors to correct. So return rsData[] unmodified
|
|
|
|
count = 0;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 1; i <= nroots; i++) {
|
|
|
|
lambda[i] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
lambda[0] = 1;
|
|
|
|
|
|
|
|
for (i = 0; i <= nroots; i++) {
|
|
|
|
b[i] = rsGFlog[lambda[i]];
|
|
|
|
}
|
|
|
|
|
|
|
|
//begin Berlekamp-Massey algorithm to determine error+erasure
|
|
|
|
//locator polynomial
|
|
|
|
r = 0;
|
|
|
|
el = 0;
|
|
|
|
while (r < nroots) { //r is the step number
|
|
|
|
r = r + 1;
|
|
|
|
//compute discrepancy at the r-th step in poly-form
|
|
|
|
DiscrR = 0;
|
|
|
|
|
|
|
|
for (i = 0; i <= r - 1; i++) {
|
|
|
|
if ((lambda[i] != 0) && (S[r - i - 1] != 63)) {
|
|
|
|
DiscrR = DiscrR ^ rsGFexp[(rsGFlog[lambda[i]] + S[r - i - 1]) % 63];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
DiscrR = rsGFlog[DiscrR];//index form
|
|
|
|
|
|
|
|
if (DiscrR == 63) {
|
|
|
|
//shift elements upward one step
|
|
|
|
for (i = nroots; i >= 1; i += -1) {
|
|
|
|
b[i] = b[i - 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
b[0] = 63;
|
|
|
|
} else {
|
|
|
|
//t(x) <-- lambda(x) - DiscrR*x*b(x)
|
|
|
|
t[0] = lambda[0];
|
|
|
|
|
|
|
|
for (i = 0; i <= nroots - 1; i++) {
|
|
|
|
if (b[i] != 63) {
|
|
|
|
t[i + 1] = lambda[i + 1] ^ rsGFexp[(DiscrR + b[i]) % 63];
|
|
|
|
} else {
|
|
|
|
t[i + 1] = lambda[i + 1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (2 * el <= r - 1) {
|
|
|
|
el = r - el;
|
|
|
|
//b(x) <-- inv(DiscrR) * lambda(x)
|
|
|
|
|
|
|
|
for (i = 0; i <= nroots; i++) {
|
|
|
|
if (lambda[i]) {
|
|
|
|
b[i] = (rsGFlog[lambda[i]] - DiscrR + 63) % 63;
|
|
|
|
} else {
|
|
|
|
b[i] = 63;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
//shift elements upward one step
|
|
|
|
for (i = nroots; i >= 1; i += -1) {
|
|
|
|
b[i] = b[i - 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
b[0] = 63;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i <= nroots; i++) {
|
|
|
|
lambda[i] = t[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} /* end while() */
|
|
|
|
|
|
|
|
//convert lambda to index form and compute deg(lambda(x))
|
|
|
|
DegLambda = 0;
|
|
|
|
for (i = 0; i <= nroots; i++) {
|
|
|
|
lambda[i] = rsGFlog[lambda[i]];
|
|
|
|
|
|
|
|
if (lambda[i] != 63) {
|
|
|
|
DegLambda = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//Find roots of the error+erasure locator polynomial by Chien search
|
|
|
|
for (i = 1; i <= nroots; i++) {
|
|
|
|
reg[i] = lambda[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
count = 0;//number of roots of lambda(x)
|
|
|
|
|
|
|
|
for (i = 1; i <= 63; i++) {
|
|
|
|
q = 1;//lambda[0] is always 0
|
|
|
|
|
|
|
|
for (j = DegLambda; j >= 1; j += -1) {
|
|
|
|
if (reg[j] != 63) {
|
|
|
|
reg[j] = (reg[j] + j) % 63;
|
|
|
|
q = q ^ rsGFexp[reg[j]];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (q == 0) { //it is a root
|
|
|
|
//store root (index-form) and error location number
|
|
|
|
root[count] = i;
|
2017-03-21 00:38:52 +00:00
|
|
|
locn[count] = i - 40;
|
2016-09-27 17:36:08 +00:00
|
|
|
//if wehave max possible roots, abort search to save time
|
|
|
|
count = count + 1;
|
|
|
|
|
|
|
|
if (count == DegLambda) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (DegLambda != count) {
|
|
|
|
//deg(lambda) unequal to number of roots => uncorrectable error detected
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
//compute err+eras evaluator poly omega(x)
|
|
|
|
// = s(x)*lambda(x) (modulo x**nroots). in index form. Also find deg(omega).
|
|
|
|
DegOmega = 0;
|
|
|
|
for (i = 0; i <= nroots - 1; i++) {
|
|
|
|
tmp = 0;
|
|
|
|
if (DegLambda < i) {
|
|
|
|
j = DegLambda;
|
|
|
|
} else {
|
|
|
|
j = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
for ( /* j = j */; j >= 0; j += -1) {
|
|
|
|
if ((S[i - j] != 63) && (lambda[j] != 63)) {
|
|
|
|
tmp = tmp ^ rsGFexp[(S[i - j] + lambda[j]) % 63];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tmp) {
|
|
|
|
DegOmega = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
omega[i] = rsGFlog[tmp];
|
|
|
|
}
|
|
|
|
|
|
|
|
omega[nroots] = 63;
|
|
|
|
|
|
|
|
//compute error values in poly-form:
|
|
|
|
// num1 = omega(inv(X(l)))
|
|
|
|
// num2 = inv(X(l))**(FCR - 1)
|
|
|
|
// den = lambda_pr(inv(X(l)))
|
|
|
|
for (j = count - 1; j >= 0; j += -1) {
|
|
|
|
num1 = 0;
|
|
|
|
|
|
|
|
for (i = DegOmega; i >= 0; i += -1) {
|
|
|
|
if (omega[i] != 63) {
|
|
|
|
num1 = num1 ^ rsGFexp[(omega[i] + i * root[j]) % 63];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
num2 = rsGFexp[0];
|
|
|
|
den = 0;
|
|
|
|
|
|
|
|
// lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i]
|
|
|
|
if (DegLambda < nroots) {
|
|
|
|
i = DegLambda;
|
|
|
|
} else {
|
|
|
|
i = nroots;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = i & ~1; i >= 0; i += -2) {
|
|
|
|
if (lambda[i + 1] != 63) {
|
|
|
|
den = den ^ rsGFexp[(lambda[i + 1] + i * root[j]) % 63];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (den == 0) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// apply error to data
|
|
|
|
if (num1 != 0) {
|
2017-03-21 00:38:52 +00:00
|
|
|
if(locn[j] < 24)
|
|
|
|
HB[locn[j]] = HB[locn[j]] ^ (rsGFexp[(rsGFlog[num1] + rsGFlog[num2] + 63 - rsGFlog[den]) % 63]);
|
2016-09-27 17:36:08 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
offset = 0U;
|
|
|
|
for (unsigned int i = 0U; i < 12U; i++, offset += 6U)
|
|
|
|
hex2Bin(HB[i], data, offset);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CRS241213::encode(unsigned char* data)
|
|
|
|
{
|
|
|
|
assert(data != NULL);
|
|
|
|
|
|
|
|
unsigned char codeword[24U];
|
|
|
|
|
|
|
|
for (unsigned int i = 0U; i < 24U; i++) {
|
|
|
|
codeword[i] = 0x00U;
|
|
|
|
|
|
|
|
unsigned int offset = 0U;
|
|
|
|
for (unsigned int j = 0U; j < 12U; j++, offset += 6U) {
|
|
|
|
unsigned char hexbit = bin2Hex(data, offset);
|
|
|
|
codeword[i] ^= gf6Mult(hexbit, ENCODE_MATRIX[j][i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned int offset = 0U;
|
|
|
|
for (unsigned int i = 0U; i < 24U; i++, offset += 6U)
|
|
|
|
hex2Bin(codeword[i], data, offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
// GF(2 ^ 6) multiply(for Reed - Solomon encoder)
|
|
|
|
unsigned char CRS241213::gf6Mult(unsigned char a, unsigned char b) const
|
|
|
|
{
|
|
|
|
unsigned char p = 0x00U;
|
|
|
|
|
|
|
|
for (unsigned int i = 0U; i < 6U; i++) {
|
|
|
|
if ((b & 0x01U) == 0x01U)
|
|
|
|
p ^= a;
|
|
|
|
|
|
|
|
a <<= 1;
|
|
|
|
|
|
|
|
if ((a & 0x40U) == 0x40U)
|
|
|
|
a ^= 0x43U; // primitive polynomial : x ^ 6 + x + 1
|
|
|
|
|
|
|
|
b >>= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return p;
|
|
|
|
}
|