FreeDATA/tnc/modem.py
2021-11-07 12:17:23 +01:00

797 lines
32 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 23 07:04:24 2020
@author: DJ2LS
"""
import sys
import ctypes
from ctypes import *
import pathlib
import audioop
#import asyncio
import logging
import time
import threading
import atexit
import numpy as np
import helpers
import static
import data_handler
####################################################
# https://stackoverflow.com/questions/7088672/pyaudio-working-but-spits-out-error-messages-each-time
# https://github.com/DJ2LS/FreeDATA/issues/22
# we need to have a look at this if we want to run this on Windows and MacOS !
# Currently it seems, this is a Linux-only problem
from ctypes import *
from contextlib import contextmanager
import pyaudio
ERROR_HANDLER_FUNC = CFUNCTYPE(None, c_char_p, c_int, c_char_p, c_int, c_char_p)
def py_error_handler(filename, line, function, err, fmt):
pass
c_error_handler = ERROR_HANDLER_FUNC(py_error_handler)
@contextmanager
def noalsaerr():
asound = cdll.LoadLibrary('libasound.so')
asound.snd_lib_error_set_handler(c_error_handler)
yield
asound.snd_lib_error_set_handler(None)
# with noalsaerr():
# p = pyaudio.PyAudio()
######################################################
# sys.path.append("hamlib/linux")
try:
from hamlib.linux import Hamlib
print("running Hamlib Version - {0} - from precompiled bundle".format(Hamlib.cvar.hamlib_version))
except ImportError:
import Hamlib
print("running Hamlib Version - {0} - from Sys Path".format(Hamlib.cvar.hamlib_version))
else:
# place for rigctld
pass
#import rigctld
#rigctld = rigctld.Rigctld()
MODEM_STATS_NR_MAX = 320
MODEM_STATS_NC_MAX = 51
class MODEMSTATS(ctypes.Structure):
_fields_ = [
("Nc", ctypes.c_int),
("snr_est", ctypes.c_float),
("rx_symbols", (ctypes.c_float * MODEM_STATS_NR_MAX)*MODEM_STATS_NC_MAX),
("nr", ctypes.c_int),
("sync", ctypes.c_int),
("foff", ctypes.c_float),
("rx_timing", ctypes.c_float),
("clock_offset", ctypes.c_float),
("sync_metric", ctypes.c_float),
("pre", ctypes.c_int),
("post", ctypes.c_int),
("uw_fails", ctypes.c_int),
]
class RF():
def __init__(self):
self.AUDIO_SAMPLE_RATE_RX = 48000
self.AUDIO_SAMPLE_RATE_TX = 48000
self.MODEM_SAMPLE_RATE = 8000
self.AUDIO_FRAMES_PER_BUFFER = 8192
self.AUDIO_CHUNKS = 48 #8 * (self.AUDIO_SAMPLE_RATE_RX/self.MODEM_SAMPLE_RATE) #48
self.AUDIO_CHANNELS = 1
# -------------------------------------------- LOAD FREEDV
try:
# we check at first for libcodec2 in root - necessary if we want to run it inside a pyinstaller binary
libname = pathlib.Path("libcodec2.so.1.0")
self.c_lib = ctypes.CDLL(libname)
print("running libcodec from INTERNAL library")
except:
# if we cant load libcodec from root, we check for subdirectory
# this happens, if we want to run it beeing build in a dev environment
libname = pathlib.Path().absolute() / "codec2/build_linux/src/libcodec2.so.1.0"
self.c_lib = ctypes.CDLL(libname)
print("running libcodec from EXTERNAL library")
# --------------------------------------------CREATE PYAUDIO INSTANCE
with noalsaerr(): # https://github.com/DJ2LS/FreeDATA/issues/22
self.p = pyaudio.PyAudio()
atexit.register(self.p.terminate)
# --------------------------------------------OPEN AUDIO CHANNEL RX
self.stream_rx = self.p.open(format=pyaudio.paInt16,
channels=self.AUDIO_CHANNELS,
rate=self.AUDIO_SAMPLE_RATE_RX,
frames_per_buffer=self.AUDIO_FRAMES_PER_BUFFER,
input=True,
input_device_index=static.AUDIO_INPUT_DEVICE
)
# --------------------------------------------OPEN AUDIO CHANNEL TX
self.stream_tx = self.p.open(format=pyaudio.paInt16,
channels=1,
rate=self.AUDIO_SAMPLE_RATE_TX,
frames_per_buffer=self.AUDIO_FRAMES_PER_BUFFER, # n_nom_modem_samples
output=True,
output_device_index=static.AUDIO_OUTPUT_DEVICE, # static.AUDIO_OUTPUT_DEVICE
)
self.streambuffer = bytes(0)
self.audio_writing_to_stream = False
# --------------------------------------------START DECODER THREAD
DECODER_THREAD = threading.Thread(target=self.receive, name="DECODER_THREAD")
DECODER_THREAD.start()
PLAYBACK_THREAD = threading.Thread(target=self.play_audio, name="PLAYBACK_THREAD")
PLAYBACK_THREAD.start()
self.fft_data = bytes()
FFT_THREAD = threading.Thread(target=self.calculate_fft, name="FFT_THREAD")
FFT_THREAD.start()
# --------------------------------------------CONFIGURE HAMLIB
# my_rig.set_ptt(Hamlib.RIG_PTT_RIG,0)
# my_rig.set_ptt(Hamlib.RIG_PTT_SERIAL_DTR,0)
# my_rig.set_ptt(Hamlib.RIG_PTT_SERIAL_RTS,1)
#self.my_rig.set_conf("dtr_state", "OFF")
#my_rig.set_conf("rts_state", "OFF")
#self.my_rig.set_conf("ptt_type", "RTS")
#my_rig.set_conf("ptt_type", "RIG_PTT_SERIAL_RTS")
# try to init hamlib
try:
Hamlib.rig_set_debug(Hamlib.RIG_DEBUG_NONE)
self.my_rig = Hamlib.Rig(int(static.HAMLIB_DEVICE_ID))
self.my_rig.set_conf("rig_pathname", static.HAMLIB_DEVICE_PORT)
self.my_rig.set_conf("retry", "5")
self.my_rig.set_conf("serial_speed", static.HAMLIB_SERIAL_SPEED)
self.my_rig.set_conf("serial_handshake", "None")
self.my_rig.set_conf("stop_bits", "1")
self.my_rig.set_conf("data_bits", "8")
if static.HAMLIB_PTT_TYPE == 'RIG':
self.hamlib_ptt_type = Hamlib.RIG_PTT_RIG
elif static.HAMLIB_PTT_TYPE == 'DTR-H':
self.hamlib_ptt_type = Hamlib.RIG_PTT_SERIAL_DTR
self.my_rig.set_conf("dtr_state", "HIGH")
self.my_rig.set_conf("ptt_type", "DTR")
elif static.HAMLIB_PTT_TYPE == 'DTR-L':
self.hamlib_ptt_type = Hamlib.RIG_PTT_SERIAL_DTR
self.my_rig.set_conf("dtr_state", "LOW")
self.my_rig.set_conf("ptt_type", "DTR")
elif static.HAMLIB_PTT_TYPE == 'RTS':
self.hamlib_ptt_type = Hamlib.RIG_PTT_SERIAL_RTS
self.my_rig.set_conf("dtr_state", "OFF")
self.my_rig.set_conf("ptt_type", "RTS")
elif static.HAMLIB_PTT_TYPE == 'PARALLEL':
self.hamlib_ptt_type = Hamlib.RIG_PTT_PARALLEL
elif static.HAMLIB_PTT_TYPE == 'MICDATA':
self.hamlib_ptt_type = Hamlib.RIG_PTT_RIG_MICDATA
elif static.HAMLIB_PTT_TYPE == 'CM108':
self.hamlib_ptt_type = Hamlib.RIG_PTT_CM108
else: # static.HAMLIB_PTT_TYPE == 'RIG_PTT_NONE':
self.hamlib_ptt_type = Hamlib.RIG_PTT_NONE
self.my_rig.open()
atexit.register(self.my_rig.close)
# set rig mode to USB
self.my_rig.set_mode(Hamlib.RIG_MODE_USB)
# start thread for getting hamlib data
HAMLIB_THREAD = threading.Thread(target=self.get_radio_stats, name="HAMLIB_THREAD")
HAMLIB_THREAD.start()
except:
print("Unexpected error:", sys.exc_info()[0])
print("can't open rig")
sys.exit("hamlib error")
# --------------------------------------------------------------------------------------------------------
def ptt_and_wait(self, state):
static.PTT_STATE = state
if state:
self.my_rig.set_ptt(self.hamlib_ptt_type, 1)
# rigctld.ptt_enable()
ptt_toggle_timeout = time.time() + 0.5
while time.time() < ptt_toggle_timeout:
pass
else:
ptt_toggle_timeout = time.time() + 0.5
while time.time() < ptt_toggle_timeout:
pass
self.my_rig.set_ptt(self.hamlib_ptt_type, 0)
# rigctld.ptt_disable()
return False
def play_audio(self):
while True:
time.sleep(0.01)
# while len(self.streambuffer) > 0:
# time.sleep(0.01)
if len(self.streambuffer) > 0 and self.audio_writing_to_stream:
self.streambuffer = bytes(self.streambuffer)
# we need t wait a little bit until the buffer is filled. If we are not waiting, we are sending empty data
time.sleep(0.1)
self.stream_tx.write(self.streambuffer)
# clear stream buffer after sending
self.streambuffer = bytes()
self.audio_writing_to_stream = False
# --------------------------------------------------------------------------------------------------------
def transmit_signalling(self, data_out, count):
state_before_transmit = static.CHANNEL_STATE
static.CHANNEL_STATE = 'SENDING_SIGNALLING'
# print(static.CHANNEL_STATE)
freedv_signalling_mode = 14
self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte)
freedv = self.c_lib.freedv_open(freedv_signalling_mode)
self.c_lib.freedv_set_clip(freedv, 1)
self.c_lib.freedv_set_tx_bpf(freedv, 1)
bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(freedv) / 8)
payload_per_frame = bytes_per_frame - 2
n_nom_modem_samples = self.c_lib.freedv_get_n_nom_modem_samples(freedv)
n_tx_modem_samples = self.c_lib.freedv_get_n_tx_modem_samples(freedv)
n_tx_preamble_modem_samples = self.c_lib.freedv_get_n_tx_preamble_modem_samples(freedv)
n_tx_postamble_modem_samples = self.c_lib.freedv_get_n_tx_postamble_modem_samples(freedv)
mod_out = ctypes.c_short * n_tx_modem_samples
mod_out = mod_out()
mod_out_preamble = ctypes.c_short * n_tx_preamble_modem_samples
mod_out_preamble = mod_out_preamble()
mod_out_postamble = ctypes.c_short * n_tx_postamble_modem_samples
mod_out_postamble = mod_out_postamble()
buffer = bytearray(payload_per_frame)
# set buffersize to length of data which will be send
buffer[:len(data_out)] = data_out
crc = ctypes.c_ushort(self.c_lib.freedv_gen_crc16(bytes(buffer), payload_per_frame)) # generate CRC16
# convert crc to 2 byte hex string
crc = crc.value.to_bytes(2, byteorder='big')
buffer += crc # append crc16 to buffer
data = (ctypes.c_ubyte * bytes_per_frame).from_buffer_copy(buffer)
self.c_lib.freedv_rawdatapreambletx(freedv, mod_out_preamble)
# modulate DATA and safe it into mod_out pointer
self.c_lib.freedv_rawdatatx(freedv, mod_out, data)
self.c_lib.freedv_rawdatapostambletx(freedv, mod_out_postamble)
self.streambuffer = bytearray()
self.streambuffer += bytes(mod_out_preamble)
self.streambuffer += bytes(mod_out)
self.streambuffer += bytes(mod_out_postamble)
converted_audio = audioop.ratecv(self.streambuffer, 2, 1, self.MODEM_SAMPLE_RATE, self.AUDIO_SAMPLE_RATE_TX, None)
self.streambuffer = bytes(converted_audio[0])
# append frame again with as much as in count defined
for i in range(1, count):
self.streambuffer += bytes(converted_audio[0])
while self.ptt_and_wait(True):
pass
# start writing audio data to audio stream
self.audio_writing_to_stream = True
# wait until audio has been processed
while self.audio_writing_to_stream:
time.sleep(0.01)
static.CHANNEL_STATE = 'SENDING_SIGNALLING'
self.ptt_and_wait(False)
# we have a problem with the receiving state
##static.CHANNEL_STATE = state_before_transmit
if state_before_transmit != 'RECEIVING_DATA':
static.CHANNEL_STATE = 'RECEIVING_SIGNALLING'
else:
static.CHANNEL_STATE = state_before_transmit
self.c_lib.freedv_close(freedv)
return True
# --------------------------------------------------------------------------------------------------------
# GET ARQ BURST FRAME VOM BUFFER AND MODULATE IT
def transmit_arq_burst(self, mode, frames):
# we could place this timing part inside the modem...
# lets see if this is a good idea..
# we need to update our timeout timestamp
state_before_transmit = static.CHANNEL_STATE
static.CHANNEL_STATE = 'SENDING_DATA'
self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte)
freedv = self.c_lib.freedv_open(mode)
self.c_lib.freedv_set_clip(freedv, 1)
self.c_lib.freedv_set_tx_bpf(freedv, 1)
n_nom_modem_samples = self.c_lib.freedv_get_n_nom_modem_samples(freedv)
#get n_tx_modem_samples which defines the size of the modulation object
n_tx_modem_samples = self.c_lib.freedv_get_n_tx_modem_samples(freedv)
n_tx_preamble_modem_samples = self.c_lib.freedv_get_n_tx_preamble_modem_samples(freedv)
n_tx_postamble_modem_samples = self.c_lib.freedv_get_n_tx_postamble_modem_samples(freedv)
bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(freedv) / 8)
payload_per_frame = bytes_per_frame - 2
mod_out = ctypes.c_short * n_tx_modem_samples
mod_out = mod_out()
mod_out_preamble = ctypes.c_short * n_tx_preamble_modem_samples
mod_out_preamble = mod_out_preamble()
mod_out_postamble = ctypes.c_short * n_tx_postamble_modem_samples
mod_out_postamble = mod_out_postamble()
self.streambuffer = bytearray()
self.c_lib.freedv_rawdatapreambletx(freedv, mod_out_preamble)
self.streambuffer += bytes(mod_out_preamble)
# loop through list of frames per burst
for n in range(0, len(frames)):
# create TX buffer
buffer = bytearray(payload_per_frame)
# set buffersize to length of data which will be send
buffer[:len(frames[n])] = frames[n]
crc = ctypes.c_ushort(self.c_lib.freedv_gen_crc16(bytes(buffer), payload_per_frame)) # generate CRC16
# convert crc to 2 byte hex string
crc = crc.value.to_bytes(2, byteorder='big')
buffer += crc # append crc16 to buffer
data = (ctypes.c_ubyte * bytes_per_frame).from_buffer_copy(buffer)
# modulate DATA and safe it into mod_out pointer
self.c_lib.freedv_rawdatatx(freedv, mod_out, data)
self.streambuffer += bytes(mod_out)
self.c_lib.freedv_rawdatapostambletx(freedv, mod_out_postamble)
self.streambuffer += bytes(mod_out_postamble)
converted_audio = audioop.ratecv(self.streambuffer, 2, 1, self.MODEM_SAMPLE_RATE, self.AUDIO_SAMPLE_RATE_TX, None)
self.streambuffer = bytes(converted_audio[0])
# -------------- transmit audio
while self.ptt_and_wait(True):
pass
# this triggers writing buffer to audio stream
# this way we are able to run this non blocking
# this needs to be optimized!
self.audio_writing_to_stream = True
# wait until audio has been processed
while self.audio_writing_to_stream:
time.sleep(0.01)
static.CHANNEL_STATE = 'SENDING_DATA'
static.CHANNEL_STATE = 'RECEIVING_SIGNALLING'
self.ptt_and_wait(False)
# close codec2 instance
self.c_lib.freedv_close(freedv)
return True
# --------------------------------------------------------------------------------------------------------
def receive(self):
freedv_mode_datac0 = 14
freedv_mode_datac1 = 10
freedv_mode_datac3 = 12
# DATAC0
self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte)
datac0_freedv = self.c_lib.freedv_open(freedv_mode_datac0)
self.c_lib.freedv_get_bits_per_modem_frame(datac0_freedv)
datac0_bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(datac0_freedv)/8)
datac0_n_max_modem_samples = self.c_lib.freedv_get_n_max_modem_samples(datac0_freedv)
# bytes_per_frame
datac0_bytes_out = (ctypes.c_ubyte * datac0_bytes_per_frame)
datac0_bytes_out = datac0_bytes_out() # get pointer from bytes_out
self.c_lib.freedv_set_frames_per_burst(datac0_freedv, 1)
datac0_modem_stats_snr = c_float()
datac0_modem_stats_sync = c_int()
datac0_buffer = bytes()
static.FREEDV_SIGNALLING_BYTES_PER_FRAME = datac0_bytes_per_frame
static.FREEDV_SIGNALLING_PAYLOAD_PER_FRAME = datac0_bytes_per_frame - 2
# DATAC1
self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte)
datac1_freedv = self.c_lib.freedv_open(freedv_mode_datac1)
datac1_bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(datac1_freedv)/8)
datac1_n_max_modem_samples = self.c_lib.freedv_get_n_max_modem_samples(datac1_freedv)
# bytes_per_frame
datac1_bytes_out = (ctypes.c_ubyte * datac1_bytes_per_frame)
datac1_bytes_out = datac1_bytes_out() # get pointer from bytes_out
self.c_lib.freedv_set_frames_per_burst(datac1_freedv, 1)
datac1_modem_stats_snr = c_float()
datac1_modem_stats_sync = c_int()
datac1_buffer = bytes()
# DATAC3
self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte)
datac3_freedv = self.c_lib.freedv_open(freedv_mode_datac3)
datac3_bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(datac3_freedv)/8)
datac3_n_max_modem_samples = self.c_lib.freedv_get_n_max_modem_samples(datac3_freedv)
# bytes_per_frame
datac3_bytes_out = (ctypes.c_ubyte * datac3_bytes_per_frame)
datac3_bytes_out = datac3_bytes_out() # get pointer from bytes_out
self.c_lib.freedv_set_frames_per_burst(datac3_freedv, 1)
datac3_modem_stats_snr = c_float()
datac3_modem_stats_sync = c_int()
datac3_buffer = bytes()
'''
if mode == static.ARQ_DATA_CHANNEL_MODE:
static.FREEDV_DATA_BYTES_PER_FRAME = bytes_per_frame
static.FREEDV_DATA_PAYLOAD_PER_FRAME = bytes_per_frame - 2
self.c_lib.freedv_set_frames_per_burst(freedv, 0)
else:
#pass
self.c_lib.freedv_set_frames_per_burst(freedv, 0)
'''
fft_buffer = bytes()
while True:
#time.sleep(0.0005)
'''
# refresh vars, so the correct parameters of the used mode are set
if mode == static.ARQ_DATA_CHANNEL_MODE:
static.FREEDV_DATA_BYTES_PER_FRAME = bytes_per_frame
static.FREEDV_DATA_PAYLOAD_PER_FRAME = bytes_per_frame - 2
'''
data_in = bytes()
data_in = self.stream_rx.read(self.AUDIO_CHUNKS, exception_on_overflow=False)
#self.fft_data = data_in
data_in = audioop.ratecv(data_in, 2, 1, self.AUDIO_SAMPLE_RATE_RX, self.MODEM_SAMPLE_RATE, None)
data_in = data_in[0] # .rstrip(b'\x00')
#self.fft_data = data_in
# we need to set nin * 2 beause of byte size in array handling
datac0_nin = self.c_lib.freedv_nin(datac0_freedv) * 2
datac1_nin = self.c_lib.freedv_nin(datac1_freedv) * 2
datac3_nin = self.c_lib.freedv_nin(datac3_freedv) * 2
# refill buffer only if every mode has worked with its data
if (len(datac0_buffer) < (datac0_nin)) and (len(datac1_buffer) < (datac1_nin)) and (len(datac3_buffer) < (datac3_nin)):
datac0_buffer += data_in
datac1_buffer += data_in
datac3_buffer += data_in
# refill fft_data buffer so we can plot a fft
if len(self.fft_data) < 1024:
self.fft_data += data_in
# DECODING DATAC0
if len(datac0_buffer) >= (datac0_nin):
datac0_audio = datac0_buffer[:datac0_nin]
datac0_buffer = datac0_buffer[datac0_nin:]
# print(len(datac0_audio))
self.c_lib.freedv_rawdatarx.argtype = [ctypes.POINTER(ctypes.c_ubyte), datac0_bytes_out, datac0_audio]
nbytes = self.c_lib.freedv_rawdatarx(datac0_freedv, datac0_bytes_out, datac0_audio) # demodulate audio
sync = self.c_lib.freedv_get_rx_status(datac0_freedv)
self.get_scatter(datac0_freedv)
if sync != 0 and nbytes != 0:
# calculate snr and scatter
self.get_scatter(datac0_freedv)
self.calculate_snr(datac0_freedv)
datac0_task = threading.Thread(target=self.process_data, args=[datac0_bytes_out, datac0_freedv, datac0_bytes_per_frame])
#datac0_task.start()
self.process_data(datac0_bytes_out, datac0_freedv, datac0_bytes_per_frame)
# DECODING DATAC1
if len(datac1_buffer) >= (datac1_nin):
datac1_audio = datac1_buffer[:datac1_nin]
datac1_buffer = datac1_buffer[datac1_nin:]
# print(len(datac1_audio))
self.c_lib.freedv_rawdatarx.argtype = [ctypes.POINTER(ctypes.c_ubyte), datac1_bytes_out, datac1_audio]
nbytes = self.c_lib.freedv_rawdatarx(datac1_freedv, datac1_bytes_out, datac1_audio) # demodulate audio
sync = self.c_lib.freedv_get_rx_status(datac1_freedv)
if sync != 0 and nbytes != 0:
# calculate snr and scatter
self.get_scatter(datac1_freedv)
self.calculate_snr(datac1_freedv)
datac1_task = threading.Thread(target=self.process_data, args=[datac1_bytes_out, datac1_freedv, datac1_bytes_per_frame])
datac1_task.start()
#print(bytes(datac1_bytes_out))
#self.process_data(datac1_bytes_out, datac1_freedv, datac1_bytes_per_frame)
# DECODING DATAC3
if len(datac3_buffer) >= (datac3_nin):
datac3_audio = datac3_buffer[:datac3_nin]
datac3_buffer = datac3_buffer[datac3_nin:]
self.c_lib.freedv_rawdatarx.argtype = [ctypes.POINTER(ctypes.c_ubyte), datac3_bytes_out, datac3_audio]
nbytes = self.c_lib.freedv_rawdatarx(datac3_freedv, datac3_bytes_out, datac3_audio) # demodulate audio
sync = self.c_lib.freedv_get_rx_status(datac3_freedv)
if sync != 0 and nbytes != 0:
# calculate snr and scatter
#self.get_scatter(datac3_freedv)
self.calculate_snr(datac3_freedv)
datac3_task = threading.Thread(target=self.process_data, args=[datac3_bytes_out, datac3_freedv, datac3_bytes_per_frame])
datac3_task.start()
# forward data only if broadcast or we are the receiver
# bytes_out[1:2] == callsign check for signalling frames, bytes_out[6:7] == callsign check for data frames, bytes_out[1:2] == b'\x01' --> broadcasts like CQ
# we could also create an own function, which returns True. In this case we could add callsign blacklists, whitelists and so on
def process_data(self, bytes_out, freedv, bytes_per_frame):
if bytes(bytes_out[1:2]) == static.MYCALLSIGN_CRC8 or bytes(bytes_out[6:7]) == static.MYCALLSIGN_CRC8 or bytes(bytes_out[1:2]) == b'\x01':
# CHECK IF FRAMETYPE IS BETWEEN 10 and 50 ------------------------
frametype = int.from_bytes(bytes(bytes_out[:1]), "big")
frame = frametype - 10
n_frames_per_burst = int.from_bytes(bytes(bytes_out[1:2]), "big")
#self.c_lib.freedv_set_frames_per_burst(freedv_data, n_frames_per_burst);
#frequency_offset = self.get_frequency_offset(freedv)
#print("Freq-Offset: " + str(frequency_offset))
if 50 >= frametype >= 10:
# force, if we don't simulate a loss of the third frame
force = True
if frame != 3 or force == True:
# send payload data to arq checker without CRC16
data_handler.arq_data_received(bytes(bytes_out[:-2]), bytes_per_frame)
#print("static.ARQ_RX_BURST_BUFFER.count(None) " + str(static.ARQ_RX_BURST_BUFFER.count(None)))
if static.RX_BURST_BUFFER.count(None) <= 1:
logging.debug("FULL BURST BUFFER ---> UNSYNC")
self.c_lib.freedv_set_sync(freedv, 0)
else:
logging.critical(
"---------------------------SIMULATED MISSING FRAME")
force = True
# BURST ACK
elif frametype == 60:
logging.debug("ACK RECEIVED....")
data_handler.burst_ack_received()
# FRAME ACK
elif frametype == 61:
logging.debug("FRAME ACK RECEIVED....")
data_handler.frame_ack_received()
# FRAME RPT
elif frametype == 62:
logging.debug("REPEAT REQUEST RECEIVED....")
data_handler.burst_rpt_received(bytes_out[:-2])
# CQ FRAME
elif frametype == 200:
logging.debug("CQ RECEIVED....")
data_handler.received_cq(bytes_out[:-2])
# PING FRAME
elif frametype == 210:
logging.debug("PING RECEIVED....")
frequency_offset = self.get_frequency_offset(freedv)
#print("Freq-Offset: " + str(frequency_offset))
data_handler.received_ping(bytes_out[:-2], frequency_offset)
# PING ACK
elif frametype == 211:
logging.debug("PING ACK RECEIVED....")
# early detection of frequency offset
#frequency_offset = int.from_bytes(bytes(bytes_out[9:11]), "big", signed=True)
#print("Freq-Offset: " + str(frequency_offset))
#current_frequency = self.my_rig.get_freq()
#corrected_frequency = current_frequency + frequency_offset
# temporarely disabled this feature, beacuse it may cause some confusion.
# we also have problems if we are operating at band bordes like 7.000Mhz
# If we get a corrected frequency less 7.000 Mhz, Ham Radio devices will not transmit...
#self.my_rig.set_vfo(Hamlib.RIG_VFO_A)
#self.my_rig.set_freq(Hamlib.RIG_VFO_A, corrected_frequency)
data_handler.received_ping_ack(bytes_out[:-2])
# ARQ FILE TRANSFER RECEIVED!
elif frametype == 225:
logging.debug("ARQ arq_received_data_channel_opener RECEIVED")
data_handler.arq_received_data_channel_opener(bytes_out[:-2])
# ARQ CHANNEL IS OPENED
elif frametype == 226:
logging.debug("ARQ arq_received_channel_is_open RECEIVED")
data_handler.arq_received_channel_is_open(bytes_out[:-2])
# ARQ CONNECT ACK / KEEP ALIVE
elif frametype == 230:
logging.debug("BEACON RECEIVED")
data_handler.received_beacon(bytes_out[:-2])
else:
logging.info("OTHER FRAME: " + str(bytes_out[:-2]))
print(frametype)
# DO UNSYNC AFTER LAST BURST by checking the frame nums against the total frames per burst
if frame == n_frames_per_burst:
logging.debug("LAST FRAME ---> UNSYNC")
self.c_lib.freedv_set_sync(freedv, 0) # FORCE UNSYNC
else:
# for debugging purposes to receive all data
pass
# print(bytes_out[:-2])
def get_frequency_offset(self, freedv):
modemStats = MODEMSTATS()
self.c_lib.freedv_get_modem_extended_stats.restype = None
self.c_lib.freedv_get_modem_extended_stats(freedv, ctypes.byref(modemStats))
offset = round(modemStats.foff) * (-1)
static.FREQ_OFFSET = offset
return offset
def get_scatter(self, freedv):
modemStats = MODEMSTATS()
self.c_lib.freedv_get_modem_extended_stats.restype = None
self.c_lib.freedv_get_modem_extended_stats(freedv, ctypes.byref(modemStats))
scatterdata = []
scatterdata_small = []
for i in range(MODEM_STATS_NC_MAX):
for j in range(MODEM_STATS_NR_MAX):
# check if odd or not to get every 2nd item for x
if (j % 2) == 0:
xsymbols = round(modemStats.rx_symbols[i][j]/1000)
ysymbols = round(modemStats.rx_symbols[i][j+1]/1000)
# check if value 0.0 or has real data
if xsymbols != 0.0 and ysymbols != 0.0:
scatterdata.append({"x": xsymbols, "y": ysymbols})
# only append scatter data if new data arrived
if 150 > len(scatterdata) > 0:
static.SCATTER = scatterdata
else:
# only take every tenth data point
scatterdata_small = scatterdata[::10]
static.SCATTER = scatterdata_small
def calculate_ber(self, freedv):
Tbits = self.c_lib.freedv_get_total_bits(freedv)
Terrs = self.c_lib.freedv_get_total_bit_errors(freedv)
if Tbits != 0:
ber = (Terrs / Tbits) * 100
static.BER = int(ber)
self.c_lib.freedv_set_total_bit_errors(freedv, 0)
self.c_lib.freedv_set_total_bits(freedv, 0)
def calculate_snr(self, freedv):
modem_stats_snr = c_float()
modem_stats_sync = c_int()
self.c_lib.freedv_get_modem_stats(freedv, byref(
modem_stats_sync), byref(modem_stats_snr))
modem_stats_snr = modem_stats_snr.value
try:
static.SNR = round(modem_stats_snr, 1)
except:
static.SNR = 0
def get_radio_stats(self):
while True:
time.sleep(0.1)
static.HAMLIB_FREQUENCY = int(self.my_rig.get_freq())
(hamlib_mode, static.HAMLIB_BANDWITH) = self.my_rig.get_mode()
static.HAMLIB_MODE = Hamlib.rig_strrmode(hamlib_mode)
#static.HAMLIB_FREQUENCY = rigctld.get_frequency()
#static.HAMLIB_MODE = rigctld.get_mode()[0]
#static.HAMLIB_BANDWITH = rigctld.get_mode()[1]
def calculate_fft(self):
while True:
time.sleep(0.01)
# WE NEED TO OPTIMIZE THIS!
if len(self.fft_data) >= 1024:
data_in = self.fft_data
self.fft_data = bytes()
# https://gist.github.com/ZWMiller/53232427efc5088007cab6feee7c6e4c
audio_data = np.fromstring(data_in, np.int16)
# Fast Fourier Transform, 10*log10(abs) is to scale it to dB
# and make sure it's not imaginary
try:
fftarray = np.fft.rfft(audio_data)
# set value 0 to 1 to avoid division by zero
fftarray[fftarray == 0] = 1
dfft = 10.*np.log10(abs(fftarray))
# round data to decrease size
dfft = np.around(dfft, 1)
dfftlist = dfft.tolist()
# send fft only if receiving
if static.CHANNEL_STATE == 'RECEIVING_SIGNALLING' or static.CHANNEL_STATE == 'RECEIVING_DATA':
static.FFT = dfftlist[10:180] #200 --> bandwith 3000
#static.FFT = dfftlist
except:
print("setting fft = 0")
# else 0
static.FFT = [0] * 400
else:
pass