FreeDATA/tnc/data_handler.py
dj2ls a8d1d576ad sending twice before lowering speed-level
possible this helps avoiding a problem with lost burst ACK
2022-02-17 12:30:38 +01:00

1334 lines
58 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 27 20:43:40 2020
@author: DJ2LS
"""
import sys
import logging, structlog, log_handler
import threading
import time
from random import randrange
import asyncio
import zlib
import ujson as json
import static
import modem
import helpers
import codec2
import queue
import sock
import uuid
import base64
TESTMODE = False
DATA_QUEUE_TRANSMIT = queue.Queue()
DATA_QUEUE_RECEIVED = queue.Queue()
class DATA():
def __init__(self):
self.data_queue_transmit = DATA_QUEUE_TRANSMIT
self.data_queue_received = DATA_QUEUE_RECEIVED
self.data_channel_last_received = 0.0 # time of last "live sign" of a frame
self.burst_ack_snr = 0 # SNR from received ack frames
self.burst_ack = False # if we received an acknowledge frame for a burst
self.data_frame_ack_received = False # if we received an acknowledge frame for a data frame
self.rpt_request_received = False # if we received an request for repeater frames
self.rpt_request_buffer = [] # requested frames, saved in a list
self.rx_start_of_transmission = 0 # time of transmission start
self.data_frame_bof = b'BOF' # 2 bytes for the BOF End of File indicator in a data frame
self.data_frame_eof = b'EOF' # 2 bytes for the EOF End of File indicator in a data frame
self.rx_n_max_retries_per_burst = 10
self.n_retries_per_burst = 0
self.received_low_bandwith_mode = False # indicator if we recevied a low bandwith mode channel ope ner
self.data_channel_max_retries = 3
self.mode_list_low_bw = [14,12]
self.time_list_low_bw = [3,6]
self.mode_list_high_bw = [14,12,10] # mode list of available modes, each mode will be used 2times per speed level
self.time_list_high_bw = [3, 6, 7] # list for time to wait for correspinding mode in seconds
# mode list for selecting between low bandwith ( 500Hz ) and normal modes with higher bandwith
if static.LOW_BANDWITH_MODE:
self.mode_list = self.mode_list_low_bw # mode list of available modes, each mode will be used 2times per speed level
self.time_list = self.time_list_low_bw # list for time to wait for correspinding mode in seconds
else:
self.mode_list = self.mode_list_high_bw # mode list of available modes, each mode will be used 2times per speed level
self.time_list = self.time_list_high_bw # list for time to wait for correspinding mode in seconds
self.speed_level = len(self.mode_list) - 1 # speed level for selecting mode
self.is_IRS = False
self.burst_nack = False
self.burst_nack_counter = 0
self.frame_received_counter = 0
self.rx_frame_bof_received = False
self.rx_frame_eof_received = False
self.transmission_timeout = 30 # transmission timeout in seconds
worker_thread_transmit = threading.Thread(target=self.worker_transmit, name="worker thread transmit",daemon=True)
worker_thread_transmit.start()
worker_thread_receive = threading.Thread(target=self.worker_receive, name="worker thread receive",daemon=True)
worker_thread_receive.start()
# START THE THREAD FOR THE TIMEOUT WATCHDOG
watchdog_thread = threading.Thread(target=self.watchdog, name="watchdog",daemon=True)
watchdog_thread.start()
def worker_transmit(self):
while True:
data = self.data_queue_transmit.get()
# [0] Command
if data[0] == 'CQ':
# [0] CQ
self.transmit_cq()
elif data[0] == 'STOP':
# [0] STOP
self.stop_transmission()
elif data[0] == 'PING':
# [0] PING
# [1] dxcallsign
self.transmit_ping(data[1])
elif data[0] == 'BEACON':
# [0] BEACON
# [1] INTERVAL int
# [2] STATE bool
self.run_beacon(data[1])
elif data[0] == 'ARQ_FILE':
# [0] ARQ_FILE
# [1] DATA_OUT bytes
# [2] MODE int
# [3] N_FRAMES_PER_BURST int
self.open_dc_and_transmit(data[1], data[2], data[3])
elif data[0] == 'ARQ_RAW':
# [0] ARQ_RAW
# [1] DATA_OUT bytes
# [2] MODE int
# [3] N_FRAMES_PER_BURST int
self.open_dc_and_transmit(data[1], data[2], data[3])
elif data[0] == 'ARQ_MESSAGE':
# [0] ARQ_FILE
# [1] DATA_OUT bytes
# [2] MODE int
# [3] N_FRAMES_PER_BURST int
self.open_dc_and_transmit(data[1], data[2], data[3])
else:
# wrong command
print(f"wrong command {data}")
pass
def worker_receive(self):
while True:
data = self.data_queue_received.get()
# [0] bytes
# [1] freedv instance
# [2] bytes_per_frame
self.process_data(bytes_out=data[0],freedv=data[1],bytes_per_frame=data[2])
def process_data(self, bytes_out, freedv, bytes_per_frame):
# forward data only if broadcast or we are the receiver
# bytes_out[1:3] == callsign check for signalling frames,
# bytes_out[2:4] == transmission
# we could also create an own function, which returns True.
frametype = int.from_bytes(bytes(bytes_out[:1]), "big")
if bytes(bytes_out[1:3]) == static.MYCALLSIGN_CRC or bytes(bytes_out[2:4]) == static.MYCALLSIGN_CRC or frametype == 200 or frametype == 250:
# CHECK IF FRAMETYPE IS BETWEEN 10 and 50 ------------------------
frame = frametype - 10
n_frames_per_burst = int.from_bytes(bytes(bytes_out[1:2]), "big")
#frequency_offset = self.get_frequency_offset(freedv)
#print("Freq-Offset: " + str(frequency_offset))
if 50 >= frametype >= 10:
# get snr of received data
#snr = self.calculate_snr(freedv)
# we need to find a wy fixing this because of mooving to class system this isn't working anymore
snr = static.SNR
structlog.get_logger("structlog").debug("[TNC] RX SNR", snr=snr)
# send payload data to arq checker without CRC16
self.arq_data_received(bytes(bytes_out[:-2]), bytes_per_frame, snr, freedv)
# if we received the last frame of a burst or the last remaining rpt frame, do a modem unsync
#if static.RX_BURST_BUFFER.count(None) <= 1 or (frame+1) == n_frames_per_burst:
# structlog.get_logger("structlog").debug(f"LAST FRAME OF BURST --> UNSYNC {frame+1}/{n_frames_per_burst}")
# self.c_lib.freedv_set_sync(freedv, 0)
# BURST ACK
elif frametype == 60:
structlog.get_logger("structlog").debug("ACK RECEIVED....")
self.burst_ack_received(bytes_out[:-2])
# FRAME ACK
elif frametype == 61:
structlog.get_logger("structlog").debug("FRAME ACK RECEIVED....")
self.frame_ack_received()
# FRAME RPT
elif frametype == 62:
structlog.get_logger("structlog").debug("REPEAT REQUEST RECEIVED....")
self.burst_rpt_received(bytes_out[:-2])
# FRAME NACK
elif frametype == 63:
structlog.get_logger("structlog").debug("FRAME NACK RECEIVED....")
self.frame_nack_received(bytes_out[:-2])
# BURST NACK
elif frametype == 64:
structlog.get_logger("structlog").debug("BURST NACK RECEIVED....")
self.burst_nack_received(bytes_out[:-2])
# CQ FRAME
elif frametype == 200:
structlog.get_logger("structlog").debug("CQ RECEIVED....")
self.received_cq(bytes_out[:-2])
# PING FRAME
elif frametype == 210:
structlog.get_logger("structlog").debug("PING RECEIVED....")
# = self.get_frequency_offset(freedv)
# we need to fix this later
frequency_offset = 0
#print("Freq-Offset: " + str(frequency_offset))
self.received_ping(bytes_out[:-2], frequency_offset)
# PING ACK
elif frametype == 211:
structlog.get_logger("structlog").debug("PING ACK RECEIVED....")
# early detection of frequency offset
#frequency_offset = int.from_bytes(bytes(bytes_out[9:11]), "big", signed=True)
#print("Freq-Offset: " + str(frequency_offset))
#current_frequency = self.my_rig.get_freq()
#corrected_frequency = current_frequency + frequency_offset
# temporarely disabled this feature, beacuse it may cause some confusion.
# we also have problems if we are operating at band bordes like 7.000Mhz
# If we get a corrected frequency less 7.000 Mhz, Ham Radio devices will not transmit...
#self.my_rig.set_vfo(Hamlib.RIG_VFO_A)
#self.my_rig.set_freq(Hamlib.RIG_VFO_A, corrected_frequency)
self.received_ping_ack(bytes_out[:-2])
# ARQ FILE TRANSFER RECEIVED!
elif frametype == 225 or frametype == 227:
structlog.get_logger("structlog").debug("ARQ arq_received_data_channel_opener")
self.arq_received_data_channel_opener(bytes_out[:-2])
# ARQ CHANNEL IS OPENED
elif frametype == 226 or frametype == 228:
structlog.get_logger("structlog").debug("ARQ arq_received_channel_is_open")
self.arq_received_channel_is_open(bytes_out[:-2])
# ARQ MANUAL MODE TRANSMISSION
elif 230 <= frametype <= 240 :
structlog.get_logger("structlog").debug("ARQ manual mode ")
self.arq_received_data_channel_opener(bytes_out[:-2])
# ARQ STOP TRANSMISSION
elif frametype == 249:
structlog.get_logger("structlog").debug("ARQ received stop transmission")
self.received_stop_transmission()
# this is outdated and we may remove it
elif frametype == 250:
structlog.get_logger("structlog").debug("BEACON RECEIVED")
self.received_beacon(bytes_out[:-2])
# TESTFRAMES
elif frametype == 255:
structlog.get_logger("structlog").debug("TESTFRAME RECEIVED", frame=bytes_out[:])
else:
structlog.get_logger("structlog").warning("[TNC] ARQ - other frame type", frametype=frametype)
else:
# for debugging purposes to receive all data
structlog.get_logger("structlog").debug("[TNC] Unknown frame received", frame=bytes_out[:-2])
def arq_data_received(self, data_in:bytes, bytes_per_frame:int, snr:int, freedv):
data_in = bytes(data_in)
global TESTMODE
# only process data if we are in ARQ and BUSY state else return to quit
if not static.ARQ_STATE and static.TNC_STATE != 'BUSY':
return
RX_PAYLOAD_PER_MODEM_FRAME = bytes_per_frame - 2 # payload per moden frame
static.TNC_STATE = 'BUSY'
static.ARQ_STATE = True
static.INFO.append("ARQ;RECEIVING")
self.data_channel_last_received = int(time.time())
# get some important data from the frame
RX_N_FRAME_OF_BURST = int.from_bytes(bytes(data_in[:1]), "big") - 10 # get number of burst frame
RX_N_FRAMES_PER_BURST = int.from_bytes(bytes(data_in[1:2]), "big") # get number of bursts from received frame
'''
The RX burst buffer needs to have a fixed length filled with "None". We need this later for counting the "Nones"
check if burst buffer has expected length else create it
'''
if len(static.RX_BURST_BUFFER) != RX_N_FRAMES_PER_BURST:
static.RX_BURST_BUFFER = [None] * RX_N_FRAMES_PER_BURST
# append data to rx burst buffer
static.RX_BURST_BUFFER[RX_N_FRAME_OF_BURST] = data_in[6:] # [frame_type][n_frames_per_burst][CRC16][CRC16]
structlog.get_logger("structlog").debug("[TNC] static.RX_BURST_BUFFER", buffer=static.RX_BURST_BUFFER)
'''
check if we received all frames per burst by checking if burst buffer has no more "Nones"
this is the ideal case because we received all data
'''
if not None in static.RX_BURST_BUFFER:
# then iterate through burst buffer and stick the burst together
# the temp burst buffer is needed for checking, if we already recevied data
temp_burst_buffer = b''
for i in range(0,len(static.RX_BURST_BUFFER)):
#static.RX_FRAME_BUFFER += static.RX_BURST_BUFFER[i]
temp_burst_buffer += static.RX_BURST_BUFFER[i]
# if frame buffer ends not with the current frame, we are going to append new data
# if data already exists, we received the frame correctly, but the ACK frame didnt receive its destination (ISS)
if not static.RX_FRAME_BUFFER.endswith(temp_burst_buffer):
static.RX_FRAME_BUFFER += temp_burst_buffer
static.RX_BURST_BUFFER = []
else:
structlog.get_logger("structlog").info("[TNC] ARQ | RX | Frame already received - sending ACK again")
static.RX_BURST_BUFFER = []
# lets check if we didnt receive a BOF and EOF yet to avoid sending ack frames if we already received all data
if not self.rx_frame_bof_received and not self.rx_frame_eof_received and data_in.find(self.data_frame_eof) < 0:
self.frame_received_counter += 1
if self.frame_received_counter >= 2:
self.frame_received_counter = 0
self.speed_level += 1
if self.speed_level >= len(self.mode_list):
self.speed_level = len(self.mode_list) - 1
# updated modes we are listening to
self.set_listening_modes(self.mode_list[self.speed_level])
# create an ack frame
ack_frame = bytearray(14)
ack_frame[:1] = bytes([60])
ack_frame[1:3] = static.DXCALLSIGN_CRC
ack_frame[3:5] = static.MYCALLSIGN_CRC
ack_frame[5:6] = bytes([int(snr)])
ack_frame[6:7] = bytes([int(self.speed_level)])
# and transmit it
txbuffer = [ack_frame]
structlog.get_logger("structlog").info("[TNC] ARQ | RX | SENDING ACK")
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,1,0,txbuffer])
# wait while transmitting
while static.TRANSMITTING:
time.sleep(0.01)
self.calculate_transfer_rate_rx(self.rx_start_of_transmission, len(static.RX_FRAME_BUFFER))
# check if we received last frame of burst and we have "Nones" in our rx buffer
# this is an indicator for missed frames.
# with this way of doing this, we always MUST receive the last frame of a burst otherwise the entire
# burst is lost
elif RX_N_FRAME_OF_BURST == RX_N_FRAMES_PER_BURST -1:
# check where a None is in our burst buffer and do frame+1, beacuse lists start at 0
missing_frames = [(frame+1) for frame, element in enumerate(static.RX_BURST_BUFFER) if element == None]
structlog.get_logger("structlog").debug("all frames per burst received", frame=RX_N_FRAME_OF_BURST, frames=RX_N_FRAMES_PER_BURST)
# set n frames per burst to modem
# this is an idea so its not getting lost....
# we need to work on this
codec2.api.freedv_set_frames_per_burst(freedv,len(missing_frames))
# then create a repeat frame
rpt_frame = bytearray(14)
rpt_frame[:1] = bytes([62])
rpt_frame[1:3] = static.DXCALLSIGN_CRC
rpt_frame[3:5] = static.MYCALLSIGN_CRC
rpt_frame[5:11] = missing_frames
# and transmit it
txbuffer = [rpt_frame]
structlog.get_logger("structlog").info("[TNC] ARQ | RX | Requesting", frames=missing_frames)
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,1,0,txbuffer])
# wait while transmitting
while static.TRANSMITTING:
time.sleep(0.01)
self.calculate_transfer_rate_rx(self.rx_start_of_transmission, len(static.RX_FRAME_BUFFER))
# we should never reach this point
else:
structlog.get_logger("structlog").error("we shouldnt reach this point...", frame=RX_N_FRAME_OF_BURST, frames=RX_N_FRAMES_PER_BURST)
# We have a BOF and EOF flag in our data. If we received both we received our frame.
# In case of loosing data but we received already a BOF and EOF we need to make sure, we
# received the complete last burst by checking it for Nones
bof_position = static.RX_FRAME_BUFFER.find(self.data_frame_bof)
eof_position = static.RX_FRAME_BUFFER.find(self.data_frame_eof)
# get total bytes per transmission information as soon we recevied a frame with a BOF
if bof_position >=0:
payload = static.RX_FRAME_BUFFER[bof_position+len(self.data_frame_bof):eof_position]
frame_length = int.from_bytes(payload[4:8], "big") #4:8 4bytes
static.TOTAL_BYTES = frame_length
compression_factor = int.from_bytes(payload[8:9], "big") #4:8 4bytes
static.ARQ_COMPRESSION_FACTOR = compression_factor / 10
self.calculate_transfer_rate_rx(self.rx_start_of_transmission, len(static.RX_FRAME_BUFFER))
if bof_position >= 0 and eof_position > 0 and not None in static.RX_BURST_BUFFER:
print(f"bof_position {bof_position} / eof_position {eof_position}")
self.rx_frame_bof_received = True
self.rx_frame_eof_received = True
#now extract raw data from buffer
payload = static.RX_FRAME_BUFFER[bof_position+len(self.data_frame_bof):eof_position]
# get the data frame crc
data_frame_crc = payload[:4] #0:4 4bytes
frame_length = int.from_bytes(payload[4:8], "big") #4:8 4bytes
static.TOTAL_BYTES = frame_length
# 8:9 = compression factor
data_frame = payload[9:]
data_frame_crc_received = helpers.get_crc_32(data_frame)
# check if data_frame_crc is equal with received crc
if data_frame_crc == data_frame_crc_received:
structlog.get_logger("structlog").info("[TNC] ARQ | RX | DATA FRAME SUCESSFULLY RECEIVED")
# decompression
data_frame_decompressed = zlib.decompress(data_frame)
static.ARQ_COMPRESSION_FACTOR = len(data_frame_decompressed) / len(data_frame)
data_frame = data_frame_decompressed
# decode to utf-8 string
#data_frame = data_frame.decode("utf-8")
# decode json objects from data frame to inspect if we received a file or message
#rawdata = json.loads(data_frame)
'''
if datatype is a file, we append to RX_BUFFER, which contains files only
dt = datatype
--> f = file
--> m = message
fn = filename
ft = filetype
d = data
crc = checksum
'''
#if rawdata["dt"] == "f" or rawdata["dt"] == "m":
# datatype = rawdata["dt"]
#else:
# datatype = "raw"
uniqueid = str(uuid.uuid4())
base64_data = base64.b64encode(data_frame)
base64_data = base64_data.decode("utf-8")
static.RX_BUFFER.append([uniqueid, int(time.time()), static.DXCALLSIGN,static.DXGRID, base64_data])
jsondata = {"arq":"received", "uuid" : static.RX_BUFFER[i][0], "timestamp": static.RX_BUFFER[i][1], "dxcallsign": str(static.RX_BUFFER[i][2], 'utf-8'), "dxgrid": str(static.RX_BUFFER[i][3], 'utf-8'), "data": base64_data}
data_out = json.dumps(jsondata)
sock.SOCKET_QUEUE.put(data_out)
static.INFO.append("ARQ;RECEIVING;SUCCESS")
# BUILDING ACK FRAME FOR DATA FRAME
ack_frame = bytearray(14)
ack_frame[:1] = bytes([61])
ack_frame[1:3] = static.DXCALLSIGN_CRC
ack_frame[3:5] = static.MYCALLSIGN_CRC
ack_frame[5:6] = bytes([int(snr)])
ack_frame[6:7] = bytes([int(self.speed_level)])
# TRANSMIT ACK FRAME FOR BURST
structlog.get_logger("structlog").info("[TNC] ARQ | RX | SENDING DATA FRAME ACK", snr=static.SNR, crc=data_frame_crc.hex())
txbuffer = [ack_frame]
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,1,0,txbuffer])
# wait while transmitting
while static.TRANSMITTING:
time.sleep(0.01)
# update our statistics AFTER the frame ACK
self.calculate_transfer_rate_rx(self.rx_start_of_transmission, len(static.RX_FRAME_BUFFER))
structlog.get_logger("structlog").info("[TNC] | RX | DATACHANNEL [" + str(static.MYCALLSIGN, 'utf-8') + "]<< >>[" + str(static.DXCALLSIGN, 'utf-8') + "]", snr=static.SNR)
else:
static.INFO.append("ARQ;RECEIVING;FAILED")
structlog.get_logger("structlog").warning("[TNC] ARQ | RX | DATA FRAME NOT SUCESSFULLY RECEIVED!", e="wrong crc", expected=data_frame_crc, received=data_frame_crc_received, overflows=static.BUFFER_OVERFLOW_COUNTER)
# BUILDING NACK FRAME FOR DATA FRAME
nack_frame = bytearray(14)
nack_frame[:1] = bytes([63])
nack_frame[1:3] = static.DXCALLSIGN_CRC
nack_frame[3:5] = static.MYCALLSIGN_CRC
nack_frame[5:6] = bytes([int(snr)])
nack_frame[6:7] = bytes([int(self.speed_level)])
# TRANSMIT NACK FRAME FOR BURST
txbuffer = [nack_frame]
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,1,0,txbuffer])
# wait while transmitting
while static.TRANSMITTING:
time.sleep(0.01)
# And finally we do a cleanup of our buffers and states
# do cleanup only when not in testmode
if not TESTMODE:
self.arq_cleanup()
def arq_transmit(self, data_out:bytes, mode:int, n_frames_per_burst:int):
global TESTMODE
self.speed_level = len(self.mode_list) - 1 # speed level for selecting mode
TX_N_SENT_BYTES = 0 # already sent bytes per data frame
self.tx_n_retry_of_burst = 0 # retries we already sent data
TX_N_MAX_RETRIES_PER_BURST = 50 # max amount of retries we sent before frame is lost
TX_N_FRAMES_PER_BURST = n_frames_per_burst # amount of n frames per burst
TX_BUFFER = [] # our buffer for appending new data
# TIMEOUTS
BURST_ACK_TIMEOUT_SECONDS = 3.0 # timeout for burst acknowledges
DATA_FRAME_ACK_TIMEOUT_SECONDS = 3.0 # timeout for data frame acknowledges
RPT_ACK_TIMEOUT_SECONDS = 3.0 # timeout for rpt frame acknowledges
# save len of data_out to TOTAL_BYTES for our statistics --> kBytes
#static.TOTAL_BYTES = round(len(data_out) / 1024, 2)
static.TOTAL_BYTES = len(data_out)
frame_total_size = len(data_out).to_bytes(4, byteorder='big')
static.INFO.append("ARQ;TRANSMITTING")
structlog.get_logger("structlog").info("[TNC] | TX | DATACHANNEL", mode=mode, Bytes=static.TOTAL_BYTES)
# compression
data_frame_compressed = zlib.compress(data_out)
compression_factor = len(data_out) / len(data_frame_compressed)
static.ARQ_COMPRESSION_FACTOR = compression_factor
compression_factor = bytes([int(static.ARQ_COMPRESSION_FACTOR * 10)])
data_out = data_frame_compressed
# reset statistics
tx_start_of_transmission = time.time()
self.calculate_transfer_rate_tx(tx_start_of_transmission, 0, len(data_out))
# append a crc and beginn and end of file indicators
frame_payload_crc = helpers.get_crc_32(data_out)
# data_out = self.data_frame_bof + frame_payload_crc + data_out + self.data_frame_eof
data_out = self.data_frame_bof + frame_payload_crc + frame_total_size + compression_factor + data_out + self.data_frame_eof
#initial bufferposition is 0
bufferposition = 0
# iterate through data out buffer
while bufferposition < len(data_out) and not self.data_frame_ack_received and static.ARQ_STATE:
# we have TX_N_MAX_RETRIES_PER_BURST attempts for sending a burst
for self.tx_n_retry_of_burst in range(0,TX_N_MAX_RETRIES_PER_BURST):
# AUTO MODE SELECTION
# mode 255 == AUTO MODE
# force usage of selected mode
if mode != 255:
data_mode = mode
structlog.get_logger("structlog").debug("FIXED MODE", mode=data_mode)
else:
# we are doing a modulo check of transmission retries of the actual burst
# every 2nd retry which failes, decreases speedlevel by 1.
# as soon as we received an ACK for the current burst, speed_level will increase
# by 1.
# the can be optimised by checking the optimal speed level for the current conditions
'''
if not self.tx_n_retry_of_burst % 2 and self.tx_n_retry_of_burst > 0:
self.speed_level -= 1
if self.speed_level < 0:
self.speed_level = 0
'''
#if self.tx_n_retry_of_burst <= 1:
# self.speed_level += 1
# if self.speed_level >= len(self.mode_list)-1:
# self.speed_level = len(self.mode_list)-1
# if speed level is greater than our available modes, set speed level to maximum = lenght of mode list -1
print(self.mode_list)
if self.speed_level >= len(self.mode_list):
self.speed_level = len(self.mode_list) - 1
data_mode = self.mode_list[self.speed_level]
structlog.get_logger("structlog").debug("Speed-level", level=self.speed_level, retry=self.tx_n_retry_of_burst)
# payload information
payload_per_frame = modem.get_bytes_per_frame(data_mode) -2
# tempbuffer list for storing our data frames
tempbuffer = []
# append data frames with TX_N_FRAMES_PER_BURST to tempbuffer
# this part ineeds to a completly rewrite!
# TX_NF_RAMES_PER_BURST = 1 is working
arqheader = bytearray()
arqheader[:1] = bytes([10]) #bytes([10 + i])
arqheader[1:2] = bytes([TX_N_FRAMES_PER_BURST])
arqheader[2:4] = static.DXCALLSIGN_CRC
arqheader[4:6] = static.MYCALLSIGN_CRC
bufferposition_end = (bufferposition + payload_per_frame - len(arqheader))
# normal behavior
if bufferposition_end <= len(data_out):
frame = data_out[bufferposition:bufferposition_end]
frame = arqheader + frame
# this point shouldnt reached that often
elif bufferposition > len(data_out):
break
# the last bytes of a frame
else:
extended_data_out = data_out[bufferposition:]
extended_data_out += bytes([0]) * (payload_per_frame-len(extended_data_out)-len(arqheader))
frame = arqheader + extended_data_out
# append frame to tempbuffer for transmission
tempbuffer.append(frame)
structlog.get_logger("structlog").debug("[TNC] tempbuffer", tempbuffer=tempbuffer)
structlog.get_logger("structlog").info("[TNC] ARQ | TX | FRAMES", mode=data_mode, fpb=TX_N_FRAMES_PER_BURST, retry=self.tx_n_retry_of_burst)
# we need to set our TRANSMITTING flag before we are adding an object the transmit queue
# this is not that nice, we could improve this somehow
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([data_mode,1,0,tempbuffer])
# wait while transmitting
while static.TRANSMITTING:
time.sleep(0.01)
# after transmission finished wait for an ACK or RPT frame
'''
burstacktimeout = time.time() + BURST_ACK_TIMEOUT_SECONDS + 100
while not self.burst_ack and not self.burst_nack and not self.rpt_request_received and not self.data_frame_ack_received and time.time() < burstacktimeout and static.ARQ_STATE:
time.sleep(0.01)
'''
#burstacktimeout = time.time() + BURST_ACK_TIMEOUT_SECONDS + 100
while not self.burst_ack and not self.burst_nack and not self.rpt_request_received and not self.data_frame_ack_received and static.ARQ_STATE:
time.sleep(0.01)
# once we received a burst ack, reset its state and break the RETRIES loop
if self.burst_ack:
self.burst_ack = False # reset ack state
self.tx_n_retry_of_burst = 0 # reset retries
break #break retry loop
if self.burst_nack:
self.burst_nack = False #reset nack state
# not yet implemented
if self.rpt_request_received:
pass
if self.data_frame_ack_received:
break #break retry loop
# we need this part for leaving the repeat loop
# static.ARQ_STATE == 'DATA' --> when stopping transmission manually
if not static.ARQ_STATE:
#print("not ready for data...leaving loop....")
break
self.calculate_transfer_rate_tx(tx_start_of_transmission, bufferposition_end, len(data_out))
# NEXT ATTEMPT
structlog.get_logger("structlog").debug("ATTEMPT", retry=self.tx_n_retry_of_burst, maxretries=TX_N_MAX_RETRIES_PER_BURST,overflows=static.BUFFER_OVERFLOW_COUNTER)
# update buffer position
bufferposition = bufferposition_end
# # update stats
self.calculate_transfer_rate_tx(tx_start_of_transmission, bufferposition_end, len(data_out))
#GOING TO NEXT ITERATION
if self.data_frame_ack_received:
static.INFO.append("ARQ;TRANSMITTING;SUCCESS")
structlog.get_logger("structlog").info("ARQ | TX | DATA TRANSMITTED!", BytesPerMinute=static.ARQ_BYTES_PER_MINUTE, BitsPerSecond=static.ARQ_BITS_PER_SECOND, overflows=static.BUFFER_OVERFLOW_COUNTER)
else:
static.INFO.append("ARQ;TRANSMITTING;FAILED")
structlog.get_logger("structlog").info("ARQ | TX | TRANSMISSION FAILED OR TIME OUT!", overflows=static.BUFFER_OVERFLOW_COUNTER)
# and last but not least doing a state cleanup
# do cleanup only when not in testmode
if not TESTMODE:
self.arq_cleanup()
# quit after transmission
if TESTMODE:
import os
os._exit(0)
# signalling frames received
def burst_ack_received(self, data_in:bytes):
# increase speed level if we received a burst ack
#self.speed_level += 1
#if self.speed_level >= len(self.mode_list)-1:
# self.speed_level = len(self.mode_list)-1
# only process data if we are in ARQ and BUSY state
if static.ARQ_STATE:
self.burst_ack = True # Force data loops of TNC to stop and continue with next frame
self.data_channel_last_received = int(time.time()) # we need to update our timeout timestamp
self.burst_ack_snr= int.from_bytes(bytes(data_in[5:6]), "big")
self.speed_level= int.from_bytes(bytes(data_in[6:7]), "big")
print(self.speed_level)
self.burst_nack_counter = 0
# signalling frames received
def burst_nack_received(self, data_in:bytes):
# increase speed level if we received a burst ack
#self.speed_level += 1
#if self.speed_level >= len(self.mode_list)-1:
# self.speed_level = len(self.mode_list)-1
# only process data if we are in ARQ and BUSY state
if static.ARQ_STATE:
self.burst_nack = True # Force data loops of TNC to stop and continue with next frame
self.data_channel_last_received = int(time.time()) # we need to update our timeout timestamp
self.burst_ack_snr= int.from_bytes(bytes(data_in[5:6]), "big")
self.speed_level= int.from_bytes(bytes(data_in[6:7]), "big")
self.burst_nack_counter += 1
print(self.speed_level)
def frame_ack_received(self):
# only process data if we are in ARQ and BUSY state
if static.ARQ_STATE:
self.data_frame_ack_received = True # Force data loops of TNC to stop and continue with next frame
self.data_channel_last_received = int(time.time()) # we need to update our timeout timestamp
def frame_nack_received(self, data_in:bytes):
static.INFO.append("ARQ;TRANSMITTING;FAILED")
if not TESTMODE:
self.arq_cleanup()
def burst_rpt_received(self, data_in:bytes):
# only process data if we are in ARQ and BUSY state
if static.ARQ_STATE and static.TNC_STATE == 'BUSY':
self.rpt_request_received = True
self.data_channel_last_received = int(time.time()) # we need to update our timeout timestamp
self.rpt_request_buffer = []
missing_area = bytes(data_in[3:12]) # 1:9
for i in range(0, 6, 2):
if not missing_area[i:i + 2].endswith(b'\x00\x00'):
missing = missing_area[i:i + 2]
self.rpt_request_buffer.insert(0, missing)
# ############################################################################################################
# ARQ DATA CHANNEL HANDLER
# ############################################################################################################
def open_dc_and_transmit(self, data_out:bytes, mode:int, n_frames_per_burst:int):
static.TNC_STATE = 'BUSY'
self.datachannel_timeout = False
# we need to compress data for gettin a compression factor.
# so we are compressing twice. This is not that nice and maybe theres another way
# for calculating transmission statistics
static.ARQ_COMPRESSION_FACTOR = len(data_out) / len(zlib.compress(data_out))
self.arq_open_data_channel(mode, n_frames_per_burst)
# wait until data channel is open
while not static.ARQ_STATE and not self.datachannel_timeout:
time.sleep(0.01)
if static.ARQ_STATE:
self.arq_transmit(data_out, mode, n_frames_per_burst)
else:
return False
def arq_open_data_channel(self, mode:int, n_frames_per_burst:int):
self.is_IRS = False
self.data_channel_last_received = int(time.time())
if static.LOW_BANDWITH_MODE and mode == 255:
frametype = bytes([227])
structlog.get_logger("structlog").debug("requesting low bandwith mode")
else:
frametype = bytes([225])
structlog.get_logger("structlog").debug("requesting high bandwith mode")
if 230 <= mode <= 240:
structlog.get_logger("structlog").debug("requesting manual mode --> not yet implemented ")
frametype = bytes([mode])
connection_frame = bytearray(14)
connection_frame[:1] = frametype
connection_frame[1:3] = static.DXCALLSIGN_CRC
connection_frame[3:5] = static.MYCALLSIGN_CRC
connection_frame[5:11] = static.MYCALLSIGN
connection_frame[13:14] = bytes([n_frames_per_burst])
while not static.ARQ_STATE:
time.sleep(0.01)
for attempt in range(1,self.data_channel_max_retries+1):
static.INFO.append("DATACHANNEL;OPENING")
structlog.get_logger("structlog").info("[TNC] ARQ | DATA | TX | [" + str(static.MYCALLSIGN, 'utf-8') + "]>> <<[" + str(static.DXCALLSIGN, 'utf-8') + "]", attempt=str(attempt) + "/" + str(self.data_channel_max_retries))
txbuffer = [connection_frame]
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,1,0,txbuffer])
# wait while transmitting
while static.TRANSMITTING:
time.sleep(0.01)
timeout = time.time() + 3
while time.time() < timeout:
time.sleep(0.01)
# break if data channel is openend
if static.ARQ_STATE:
break
if static.ARQ_STATE:
break
if not static.ARQ_STATE and attempt == self.data_channel_max_retries:
static.INFO.append("DATACHANNEL;FAILED")
structlog.get_logger("structlog").warning("[TNC] ARQ | TX | DATA [" + str(static.MYCALLSIGN, 'utf-8') + "]>>X<<[" + str(static.DXCALLSIGN, 'utf-8') + "]")
self.datachannel_timeout = True
if not TESTMODE:
self.arq_cleanup()
return False
#sys.exit() # close thread and so connection attempts
def arq_received_data_channel_opener(self, data_in:bytes):
self.is_IRS = True
static.INFO.append("DATACHANNEL;RECEIVEDOPENER")
static.DXCALLSIGN_CRC = bytes(data_in[3:5])
static.DXCALLSIGN = bytes(data_in[5:11]).rstrip(b'\x00')
n_frames_per_burst = int.from_bytes(bytes(data_in[13:14]), "big")
frametype = int.from_bytes(bytes(data_in[:1]), "big")
#check if we received low bandwith mode
if frametype == 225:
self.received_low_bandwith_mode = False
self.mode_list = self.mode_list_high_bw
self.time_list = self.time_list_high_bw
self.speed_level = len(self.mode_list) - 1
else:
self.received_low_bandwith_mode = True
self.mode_list = self.mode_list_low_bw
self.time_list = self.time_list_low_bw
self.speed_level = len(self.mode_list) - 1
if 230 <= frametype <= 240:
print("manual mode request")
# updated modes we are listening to
self.set_listening_modes(self.mode_list[self.speed_level])
helpers.add_to_heard_stations(static.DXCALLSIGN,static.DXGRID, 'DATA-CHANNEL', static.SNR, static.FREQ_OFFSET, static.HAMLIB_FREQUENCY)
structlog.get_logger("structlog").info("[TNC] ARQ | DATA | RX | [" + str(static.MYCALLSIGN, 'utf-8') + "]>> <<[" + str(static.DXCALLSIGN, 'utf-8') + "]", bandwith="wide")
static.ARQ_STATE = True
static.TNC_STATE = 'BUSY'
self.reset_statistics()
self.data_channel_last_received = int(time.time())
# check if we are in low bandwith mode
if static.LOW_BANDWITH_MODE or self.received_low_bandwith_mode:
frametype = bytes([228])
structlog.get_logger("structlog").debug("responding with low bandwith mode")
else:
frametype = bytes([226])
structlog.get_logger("structlog").debug("responding with high bandwith mode")
connection_frame = bytearray(14)
connection_frame[:1] = frametype
connection_frame[1:3] = static.DXCALLSIGN_CRC
connection_frame[3:5] = static.MYCALLSIGN_CRC
connection_frame[13:14] = bytes([static.ARQ_PROTOCOL_VERSION]) #crc8 of version for checking protocol version
txbuffer = [connection_frame]
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,1,0,txbuffer])
# wait while transmitting
while static.TRANSMITTING:
time.sleep(0.01)
structlog.get_logger("structlog").info("[TNC] ARQ | DATA | RX | [" + str(static.MYCALLSIGN, 'utf-8') + "]>>|<<[" + str(static.DXCALLSIGN, 'utf-8') + "]", bandwith="wide", snr=static.SNR)
# set start of transmission for our statistics
self.rx_start_of_transmission = time.time()
def arq_received_channel_is_open(self, data_in:bytes):
protocol_version = int.from_bytes(bytes(data_in[13:14]), "big")
if protocol_version == static.ARQ_PROTOCOL_VERSION:
static.INFO.append("DATACHANNEL;OPEN")
static.DXCALLSIGN_CRC = bytes(data_in[3:5])
frametype = int.from_bytes(bytes(data_in[:1]), "big")
if frametype == 228:
self.received_low_bandwith_mode = True
self.mode_list = self.mode_list_low_bw
self.time_list = self.time_list_low_bw
self.speed_level = len(self.mode_list) - 1
structlog.get_logger("structlog").debug("low bandwith mode", modes=self.mode_list)
else:
self.received_low_bandwith_mode = False
self.mode_list = self.mode_list_high_bw
self.time_list = self.time_list_high_bw
self.speed_level = len(self.mode_list) - 1
structlog.get_logger("structlog").debug("high bandwith mode", modes=self.mode_list)
helpers.add_to_heard_stations(static.DXCALLSIGN,static.DXGRID, 'DATA-CHANNEL', static.SNR, static.FREQ_OFFSET, static.HAMLIB_FREQUENCY)
structlog.get_logger("structlog").info("[TNC] ARQ | DATA | TX | [" + str(static.MYCALLSIGN, 'utf-8') + "]>>|<<[" + str(static.DXCALLSIGN, 'utf-8') + "]", snr=static.SNR)
# as soon as we set ARQ_STATE to DATA, transmission starts
static.ARQ_STATE = True
self.data_channel_last_received = int(time.time())
else:
static.TNC_STATE = 'IDLE'
static.ARQ_STATE = False
static.INFO.append("PROTOCOL;VERSION_MISSMATCH")
structlog.get_logger("structlog").warning("protocol version missmatch", received=protocol_version, own=static.ARQ_PROTOCOL_VERSION)
self.arq_cleanup()
# ---------- PING
def transmit_ping(self, callsign:str):
static.DXCALLSIGN = bytes(callsign, 'utf-8').rstrip(b'\x00')
static.DXCALLSIGN_CRC = helpers.get_crc_16(static.DXCALLSIGN)
static.INFO.append("PING;SENDING")
structlog.get_logger("structlog").info("[TNC] PING REQ [" + str(static.MYCALLSIGN, 'utf-8') + "] >>> [" + str(static.DXCALLSIGN, 'utf-8') + "]" )
ping_frame = bytearray(14)
ping_frame[:1] = bytes([210])
ping_frame[1:3] = static.DXCALLSIGN_CRC
ping_frame[3:5] = static.MYCALLSIGN_CRC
ping_frame[5:11] = static.MYCALLSIGN
txbuffer = [ping_frame]
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,1,0,txbuffer])
# wait while transmitting
while static.TRANSMITTING:
time.sleep(0.01)
def received_ping(self, data_in:bytes, frequency_offset:str):
static.DXCALLSIGN_CRC = bytes(data_in[3:5])
static.DXCALLSIGN = bytes(data_in[5:11]).rstrip(b'\x00')
helpers.add_to_heard_stations(static.DXCALLSIGN,static.DXGRID, 'PING', static.SNR, static.FREQ_OFFSET, static.HAMLIB_FREQUENCY)
static.INFO.append("PING;RECEIVING")
structlog.get_logger("structlog").info("[TNC] PING REQ [" + str(static.MYCALLSIGN, 'utf-8') + "] <<< [" + str(static.DXCALLSIGN, 'utf-8') + "]", snr=static.SNR )
ping_frame = bytearray(14)
ping_frame[:1] = bytes([211])
ping_frame[1:3] = static.DXCALLSIGN_CRC
ping_frame[3:5] = static.MYCALLSIGN_CRC
ping_frame[5:11] = static.MYGRID
ping_frame[11:13] = frequency_offset.to_bytes(2, byteorder='big', signed=True)
txbuffer = [ping_frame]
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,1,0,txbuffer])
# wait while transmitting
while static.TRANSMITTING:
time.sleep(0.01)
def received_ping_ack(self, data_in:bytes):
static.DXCALLSIGN_CRC = bytes(data_in[3:5])
static.DXGRID = bytes(data_in[5:11]).rstrip(b'\x00')
helpers.add_to_heard_stations(static.DXCALLSIGN,static.DXGRID, 'PING-ACK', static.SNR, static.FREQ_OFFSET, static.HAMLIB_FREQUENCY)
static.INFO.append("PING;RECEIVEDACK")
structlog.get_logger("structlog").info("[TNC] PING ACK [" + str(static.MYCALLSIGN, 'utf-8') + "] >|< [" + str(static.DXCALLSIGN, 'utf-8') + "]", snr=static.SNR )
static.TNC_STATE = 'IDLE'
def stop_transmission(self):
structlog.get_logger("structlog").warning("[TNC] Stopping transmission!")
stop_frame = bytearray(14)
stop_frame[:1] = bytes([249])
stop_frame[1:3] = static.DXCALLSIGN_CRC
stop_frame[3:5] = static.MYCALLSIGN_CRC
txbuffer = [stop_frame]
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,2,250,txbuffer])
while static.TRANSMITTING:
time.sleep(0.01)
static.TNC_STATE = 'IDLE'
static.ARQ_STATE = False
static.INFO.append("TRANSMISSION;STOPPED")
self.arq_cleanup()
def received_stop_transmission(self):
structlog.get_logger("structlog").warning("[TNC] Stopping transmission!")
static.TNC_STATE = 'IDLE'
static.ARQ_STATE = False
static.INFO.append("TRANSMISSION;STOPPED")
self.arq_cleanup()
# ----------- BROADCASTS
def run_beacon(self, interval:int):
try:
structlog.get_logger("structlog").warning("[TNC] Starting beacon!", interval=interval)
while static.BEACON_STATE and not static.ARQ_STATE:
beacon_frame = bytearray(14)
beacon_frame[:1] = bytes([250])
beacon_frame[1:7] = static.MYCALLSIGN
beacon_frame[7:13] = static.MYGRID
static.INFO.append("BEACON;SENDING")
structlog.get_logger("structlog").info("[TNC] Sending beacon!", interval=interval)
txbuffer = [beacon_frame]
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,1,0,txbuffer])
# wait while transmitting
while static.TRANSMITTING:
time.sleep(0.01)
time.sleep(interval)
#threading.Event().wait(interval)
except Exception as e:
print(e)
def received_beacon(self, data_in:bytes):
# here we add the received station to the heard stations buffer
dxcallsign = bytes(data_in[2:8]).rstrip(b'\x00')
dxgrid = bytes(data_in[8:14]).rstrip(b'\x00')
static.INFO.append("BEACON;RECEIVING")
structlog.get_logger("structlog").info("[TNC] BEACON RCVD [" + str(dxcallsign, 'utf-8') + "]["+ str(dxgrid, 'utf-8') +"] ", snr=static.SNR)
helpers.add_to_heard_stations(dxcallsign,dxgrid, 'BEACON', static.SNR, static.FREQ_OFFSET, static.HAMLIB_FREQUENCY)
def transmit_cq(self):
logging.info("CQ CQ CQ")
static.INFO.append("CQ;SENDING")
cq_frame = bytearray(14)
cq_frame[:1] = bytes([200])
cq_frame[1:7] = static.MYCALLSIGN
cq_frame[7:13] = static.MYGRID
txbuffer = [cq_frame]
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,2,500,txbuffer])
# wait while transmitting
while static.TRANSMITTING:
time.sleep(0.01)
return
def received_cq(self, data_in:bytes):
# here we add the received station to the heard stations buffer
dxcallsign = bytes(data_in[1:7]).rstrip(b'\x00')
dxgrid = bytes(data_in[7:13]).rstrip(b'\x00')
static.INFO.append("CQ;RECEIVING")
structlog.get_logger("structlog").info("[TNC] CQ RCVD [" + str(dxcallsign, 'utf-8') + "]["+ str(dxgrid, 'utf-8') +"] ", snr=static.SNR)
helpers.add_to_heard_stations(dxcallsign,dxgrid, 'CQ CQ CQ', static.SNR, static.FREQ_OFFSET, static.HAMLIB_FREQUENCY)
# ------------ CALUCLATE TRANSFER RATES
def calculate_transfer_rate_rx(self, rx_start_of_transmission:float, receivedbytes:int) -> list:
try:
static.ARQ_TRANSMISSION_PERCENT = int((receivedbytes*static.ARQ_COMPRESSION_FACTOR / (static.TOTAL_BYTES)) * 100)
transmissiontime = time.time() - self.rx_start_of_transmission
if receivedbytes > 0:
static.ARQ_BITS_PER_SECOND = int((receivedbytes*8) / transmissiontime)
static.ARQ_BYTES_PER_MINUTE = int((receivedbytes) / (transmissiontime/60))
else:
static.ARQ_BITS_PER_SECOND = 0
static.ARQ_BYTES_PER_MINUTE = 0
except:
static.ARQ_TRANSMISSION_PERCENT = 0.0
static.ARQ_BITS_PER_SECOND = 0
static.ARQ_BYTES_PER_MINUTE = 0
return [static.ARQ_BITS_PER_SECOND, \
static.ARQ_BYTES_PER_MINUTE, \
static.ARQ_TRANSMISSION_PERCENT]
def reset_statistics(self):
# reset ARQ statistics
static.ARQ_BYTES_PER_MINUTE_BURST = 0
static.ARQ_BYTES_PER_MINUTE = 0
static.ARQ_BITS_PER_SECOND_BURST = 0
static.ARQ_BITS_PER_SECOND = 0
static.ARQ_TRANSMISSION_PERCENT = 0
static.TOTAL_BYTES = 0
def calculate_transfer_rate_tx(self, tx_start_of_transmission:float, sentbytes:int, tx_buffer_length:int) -> list:
try:
static.ARQ_TRANSMISSION_PERCENT = int((sentbytes / tx_buffer_length) * 100)
transmissiontime = time.time() - tx_start_of_transmission
if sentbytes > 0:
static.ARQ_BITS_PER_SECOND = int((sentbytes*8) / transmissiontime) # Bits per Second
static.ARQ_BYTES_PER_MINUTE = int((sentbytes) / (transmissiontime/60)) #Bytes per Minute
else:
static.ARQ_BITS_PER_SECOND = 0
static.ARQ_BYTES_PER_MINUTE = 0
except:
static.ARQ_TRANSMISSION_PERCENT = 0.0
static.ARQ_BITS_PER_SECOND = 0
static.ARQ_BYTES_PER_MINUTE = 0
return [static.ARQ_BITS_PER_SECOND, \
static.ARQ_BYTES_PER_MINUTE, \
static.ARQ_TRANSMISSION_PERCENT]
# ----------------------CLEANUP AND RESET FUNCTIONS
def arq_cleanup(self):
structlog.get_logger("structlog").debug("cleanup")
self.rx_frame_bof_received = False
self.rx_frame_eof_received = False
static.TNC_STATE = 'IDLE'
static.ARQ_STATE = False
self.burst_ack = False
self.rpt_request_received = False
self.data_frame_ack_received = False
static.RX_BURST_BUFFER = []
static.RX_FRAME_BUFFER = b''
self.burst_ack_snr= 255
# reset modem receiving state to reduce cpu load
modem.RECEIVE_DATAC1 = False
modem.RECEIVE_DATAC3 = False
# reset buffer overflow counter
static.BUFFER_OVERFLOW_COUNTER = [0,0,0]
self.is_IRS = False
self.burst_nack = False
self.burst_nack_counter = 0
self.frame_received_counter = 0
self.speed_level = len(self.mode_list) - 1
# low bandwith mode indicator
self.received_low_bandwith_mode = False
# reset retry counter for rx channel / burst
self.n_retries_per_burst = 0
def arq_reset_ack(self,state:bool):
self.burst_ack = state
self.rpt_request_received = state
self.data_frame_ack_received = state
def set_listening_modes(self, mode):
# set modes we want listening to
mode_name = codec2.freedv_get_mode_name_by_value(mode)
if mode_name == 'datac1':
modem.RECEIVE_DATAC1 = True
structlog.get_logger("structlog").debug("changing listening data mode", mode="datac1")
elif mode_name == 'datac3':
modem.RECEIVE_DATAC3 = True
structlog.get_logger("structlog").debug("changing listening data mode", mode="datac3")
elif mode_name == 'allmodes':
modem.RECEIVE_DATAC1 = True
modem.RECEIVE_DATAC3 = True
structlog.get_logger("structlog").debug("changing listening data mode", mode="datac1/datac3")
# ------------------------- WATCHDOG FUNCTIONS FOR TIMER
def watchdog(self):
"""
Author: DJ2LS
watchdog master function. Frome here we call the watchdogs
"""
while True:
time.sleep(0.1)
self.data_channel_keep_alive_watchdog()
self.burst_watchdog()
def burst_watchdog(self):
# IRS SIDE
if static.ARQ_STATE and static.TNC_STATE == 'BUSY' and self.is_IRS:
if self.data_channel_last_received + self.time_list[self.speed_level] > time.time():
#print((self.data_channel_last_received + self.time_list[self.speed_level])-time.time())
pass
else:
print("TIMEOUT")
self.frame_received_counter = 0
self.burst_nack_counter += 1
if self.burst_nack_counter >= 2:
self.speed_level -= 1
print(self.burst_nack_counter)
print(self.speed_level)
self.burst_nack_counter = 0
if self.speed_level <= 0:
self.speed_level = 0
# updated modes we are listening to
self.set_listening_modes(self.mode_list[self.speed_level])
# BUILDING NACK FRAME FOR DATA FRAME
burst_nack_frame = bytearray(14)
burst_nack_frame[:1] = bytes([64])
burst_nack_frame[1:3] = static.DXCALLSIGN_CRC
burst_nack_frame[3:5] = static.MYCALLSIGN_CRC
burst_nack_frame[5:6] = bytes([0])
burst_nack_frame[6:7] = bytes([int(self.speed_level)])
# TRANSMIT NACK FRAME FOR BURST
txbuffer = [burst_nack_frame]
static.TRANSMITTING = True
modem.MODEM_TRANSMIT_QUEUE.put([14,1,0,txbuffer])
# wait while transmitting
#while static.TRANSMITTING:
# #time.sleep(0.01)
# self.data_channel_last_received = time.time()
self.data_channel_last_received = time.time()
self.n_retries_per_burst += 1
if self.n_retries_per_burst >= self.rx_n_max_retries_per_burst:
self.arq_cleanup()
print("RX TIMEOUT!!!!")
#print(self.n_retries_per_burst)
def data_channel_keep_alive_watchdog(self):
"""
Author: DJ2LS
"""
# and not static.ARQ_SEND_KEEP_ALIVE:
if static.ARQ_STATE and static.TNC_STATE == 'BUSY':
time.sleep(0.01)
if self.data_channel_last_received + self.transmission_timeout > time.time():
time.sleep(0.01)
#print(self.data_channel_last_received + self.transmission_timeout - time.time())
#pass
else:
self.data_channel_last_received = 0
logging.info("DATA [" + str(static.MYCALLSIGN, 'utf-8') + "]<<T>>[" + str(static.DXCALLSIGN, 'utf-8') + "]")
static.INFO.append("ARQ;RECEIVING;FAILED")
if not TESTMODE:
self.arq_cleanup()