FreeDATA/tnc/modem.py
DJ2LS e7ccf42ec3 modem optimization
optimized chunk size for audio data. DATAC3 should now work and overall SNR is optimized since we have less biterrors beacuse of losses by simultaneous buffer allocation
2021-10-03 16:31:34 +02:00

724 lines
29 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 23 07:04:24 2020
@author: DJ2LS
"""
import sys
import ctypes
from ctypes import *
import pathlib
import audioop
#import asyncio
import logging
import time
import threading
import atexit
import numpy as np
import pyaudio
import helpers
import static
import data_handler
# sys.path.append("hamlib/linux")
try:
import Hamlib
print("running Hamlib from Sys Path")
except ImportError:
from hamlib.linux import Hamlib
print("running Hamlib from precompiled bundle")
else:
# place for rigctld
pass
#import rigctld
#rigctld = rigctld.Rigctld()
MODEM_STATS_NR_MAX = 320
MODEM_STATS_NC_MAX = 51
class MODEMSTATS(ctypes.Structure):
_fields_ = [
("Nc", ctypes.c_int),
("snr_est", ctypes.c_float),
("rx_symbols", (ctypes.c_float * MODEM_STATS_NR_MAX)*MODEM_STATS_NC_MAX),
("nr", ctypes.c_int),
("sync", ctypes.c_int),
("foff", ctypes.c_float),
("rx_timing", ctypes.c_float),
("clock_offset", ctypes.c_float),
("sync_metric", ctypes.c_float),
("pre", ctypes.c_int),
("post", ctypes.c_int),
("uw_fails", ctypes.c_int),
]
class RF():
def __init__(self):
self.AUDIO_SAMPLE_RATE_RX = 48000
self.AUDIO_SAMPLE_RATE_TX = 48000
self.MODEM_SAMPLE_RATE = 8000
self.AUDIO_FRAMES_PER_BUFFER = 8192
self.AUDIO_CHUNKS = 48 #8 * (self.AUDIO_SAMPLE_RATE_RX/self.MODEM_SAMPLE_RATE) #48
self.AUDIO_CHANNELS = 1
# -------------------------------------------- LOAD FREEDV
try:
# we check at first for libcodec2 in root - necessary if we want to run it inside a pyinstaller binary
libname = pathlib.Path("libcodec2.so.1.0")
self.c_lib = ctypes.CDLL(libname)
print("running libcodec from INTERNAL library")
except:
# if we cant load libcodec from root, we check for subdirectory
# this is, if we want to run it without beeing build in a dev environment
libname = pathlib.Path().absolute() / "codec2/build_linux/src/libcodec2.so.1.0"
self.c_lib = ctypes.CDLL(libname)
print("running libcodec from EXTERNAL library")
# --------------------------------------------CREATE PYAUDIO INSTANCE
self.p = pyaudio.PyAudio()
atexit.register(self.p.terminate)
# --------------------------------------------OPEN AUDIO CHANNEL RX
self.stream_rx = self.p.open(format=pyaudio.paInt16,
channels=self.AUDIO_CHANNELS,
rate=self.AUDIO_SAMPLE_RATE_RX,
frames_per_buffer=self.AUDIO_FRAMES_PER_BUFFER,
input=True,
input_device_index=static.AUDIO_INPUT_DEVICE
)
# --------------------------------------------OPEN AUDIO CHANNEL TX
self.stream_tx = self.p.open(format=pyaudio.paInt16,
channels=1,
rate=self.AUDIO_SAMPLE_RATE_TX,
frames_per_buffer=self.AUDIO_FRAMES_PER_BUFFER, # n_nom_modem_samples
output=True,
output_device_index=static.AUDIO_OUTPUT_DEVICE, # static.AUDIO_OUTPUT_DEVICE
)
self.streambuffer = bytes(0)
self.audio_writing_to_stream = False
# --------------------------------------------START DECODER THREAD
DECODER_THREAD = threading.Thread(target=self.receive, name="DECODER_THREAD")
DECODER_THREAD.start()
PLAYBACK_THREAD = threading.Thread(target=self.play_audio, name="PLAYBACK_THREAD")
PLAYBACK_THREAD.start()
self.fft_data = bytes()
FFT_THREAD = threading.Thread(target=self.calculate_fft, name="FFT_THREAD")
FFT_THREAD.start()
# --------------------------------------------CONFIGURE HAMLIB
# my_rig.set_ptt(Hamlib.RIG_PTT_RIG,0)
# my_rig.set_ptt(Hamlib.RIG_PTT_SERIAL_DTR,0)
# my_rig.set_ptt(Hamlib.RIG_PTT_SERIAL_RTS,1)
#self.my_rig.set_conf("dtr_state", "OFF")
#my_rig.set_conf("rts_state", "OFF")
#self.my_rig.set_conf("ptt_type", "RTS")
#my_rig.set_conf("ptt_type", "RIG_PTT_SERIAL_RTS")
# try to init hamlib
try:
Hamlib.rig_set_debug(Hamlib.RIG_DEBUG_NONE)
self.my_rig = Hamlib.Rig(int(static.HAMLIB_DEVICE_ID))
self.my_rig.set_conf("rig_pathname", static.HAMLIB_DEVICE_PORT)
self.my_rig.set_conf("retry", "5")
self.my_rig.set_conf("serial_speed", static.HAMLIB_SERIAL_SPEED)
self.my_rig.set_conf("serial_handshake", "None")
self.my_rig.set_conf("stop_bits", "1")
self.my_rig.set_conf("data_bits", "8")
if static.HAMLIB_PTT_TYPE == 'RIG':
self.hamlib_ptt_type = Hamlib.RIG_PTT_RIG
elif static.HAMLIB_PTT_TYPE == 'DTR-H':
self.hamlib_ptt_type = Hamlib.RIG_PTT_SERIAL_DTR
self.my_rig.set_conf("dtr_state", "HIGH")
self.my_rig.set_conf("ptt_type", "DTR")
elif static.HAMLIB_PTT_TYPE == 'DTR-L':
self.hamlib_ptt_type = Hamlib.RIG_PTT_SERIAL_DTR
self.my_rig.set_conf("dtr_state", "LOW")
self.my_rig.set_conf("ptt_type", "DTR")
elif static.HAMLIB_PTT_TYPE == 'RTS':
self.hamlib_ptt_type = Hamlib.RIG_PTT_SERIAL_RTS
self.my_rig.set_conf("dtr_state", "OFF")
self.my_rig.set_conf("ptt_type", "RTS")
elif static.HAMLIB_PTT_TYPE == 'PARALLEL':
self.hamlib_ptt_type = Hamlib.RIG_PTT_PARALLEL
elif static.HAMLIB_PTT_TYPE == 'MICDATA':
self.hamlib_ptt_type = Hamlib.RIG_PTT_RIG_MICDATA
elif static.HAMLIB_PTT_TYPE == 'CM108':
self.hamlib_ptt_type = Hamlib.RIG_PTT_CM108
else: # static.HAMLIB_PTT_TYPE == 'RIG_PTT_NONE':
self.hamlib_ptt_type = Hamlib.RIG_PTT_NONE
self.my_rig.open()
atexit.register(self.my_rig.close)
# set rig mode to USB
self.my_rig.set_mode(Hamlib.RIG_MODE_USB)
# start thread for getting hamlib data
HAMLIB_THREAD = threading.Thread(
target=self.get_radio_stats, name="HAMLIB_THREAD")
HAMLIB_THREAD.start()
except:
print("Unexpected error:", sys.exc_info()[0])
print("can't open rig")
sys.exit("hamlib error")
# --------------------------------------------------------------------------------------------------------
def ptt_and_wait(self, state):
static.PTT_STATE = state
if state:
self.my_rig.set_ptt(self.hamlib_ptt_type, 1)
# rigctld.ptt_enable()
ptt_toggle_timeout = time.time() + 0.5
while time.time() < ptt_toggle_timeout:
pass
else:
ptt_toggle_timeout = time.time() + 0.5
while time.time() < ptt_toggle_timeout:
pass
self.my_rig.set_ptt(self.hamlib_ptt_type, 0)
# rigctld.ptt_disable()
return False
def play_audio(self):
while True:
time.sleep(0.01)
# while len(self.streambuffer) > 0:
# time.sleep(0.01)
if len(self.streambuffer) > 0 and self.audio_writing_to_stream:
self.streambuffer = bytes(self.streambuffer)
# we need t wait a little bit until the buffer is filled. If we are not waiting, we are sending empty data
time.sleep(0.1)
self.stream_tx.write(self.streambuffer)
# clear stream buffer after sending
self.streambuffer = bytes()
self.audio_writing_to_stream = False
# --------------------------------------------------------------------------------------------------------
def transmit_signalling(self, data_out, count):
state_before_transmit = static.CHANNEL_STATE
static.CHANNEL_STATE = 'SENDING_SIGNALLING'
# print(static.CHANNEL_STATE)
freedv_signalling_mode = 14
self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte)
freedv = self.c_lib.freedv_open(freedv_signalling_mode)
bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(freedv) / 8)
payload_per_frame = bytes_per_frame - 2
n_nom_modem_samples = self.c_lib.freedv_get_n_nom_modem_samples(freedv)
n_tx_modem_samples = self.c_lib.freedv_get_n_tx_modem_samples(freedv)
n_tx_preamble_modem_samples = self.c_lib.freedv_get_n_tx_preamble_modem_samples(freedv)
n_tx_postamble_modem_samples = self.c_lib.freedv_get_n_tx_postamble_modem_samples(freedv)
mod_out = ctypes.c_short * n_tx_modem_samples
mod_out = mod_out()
mod_out_preamble = ctypes.c_short * n_tx_preamble_modem_samples
mod_out_preamble = mod_out_preamble()
mod_out_postamble = ctypes.c_short * n_tx_postamble_modem_samples
mod_out_postamble = mod_out_postamble()
buffer = bytearray(payload_per_frame)
# set buffersize to length of data which will be send
buffer[:len(data_out)] = data_out
crc = ctypes.c_ushort(self.c_lib.freedv_gen_crc16(bytes(buffer), payload_per_frame)) # generate CRC16
# convert crc to 2 byte hex string
crc = crc.value.to_bytes(2, byteorder='big')
buffer += crc # append crc16 to buffer
data = (ctypes.c_ubyte * bytes_per_frame).from_buffer_copy(buffer)
self.c_lib.freedv_rawdatapreambletx(freedv, mod_out_preamble)
# modulate DATA and safe it into mod_out pointer
self.c_lib.freedv_rawdatatx(freedv, mod_out, data)
self.c_lib.freedv_rawdatapostambletx(freedv, mod_out_postamble)
self.streambuffer = bytearray()
self.streambuffer += bytes(mod_out_preamble)
self.streambuffer += bytes(mod_out)
self.streambuffer += bytes(mod_out_postamble)
converted_audio = audioop.ratecv(self.streambuffer, 2, 1, self.MODEM_SAMPLE_RATE, self.AUDIO_SAMPLE_RATE_TX, None)
self.streambuffer = bytes(converted_audio[0])
# append frame again with as much as in count defined
for i in range(1, count):
self.streambuffer += bytes(converted_audio[0])
while self.ptt_and_wait(True):
pass
# start writing audio data to audio stream
self.audio_writing_to_stream = True
# wait until audio has been processed
while self.audio_writing_to_stream:
time.sleep(0.01)
static.CHANNEL_STATE = 'SENDING_SIGNALLING'
self.ptt_and_wait(False)
# we have a problem with the receiving state
##static.CHANNEL_STATE = state_before_transmit
if state_before_transmit != 'RECEIVING_DATA':
static.CHANNEL_STATE = 'RECEIVING_SIGNALLING'
else:
static.CHANNEL_STATE = state_before_transmit
self.c_lib.freedv_close(freedv)
return True
# --------------------------------------------------------------------------------------------------------
# GET ARQ BURST FRAME VOM BUFFER AND MODULATE IT
def transmit_arq_burst(self, mode, frames):
# we could place this timing part inside the modem...
# lets see if this is a good idea..
# we need to update our timeout timestamp
state_before_transmit = static.CHANNEL_STATE
static.CHANNEL_STATE = 'SENDING_DATA'
self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte)
freedv = self.c_lib.freedv_open(mode)
n_nom_modem_samples = self.c_lib.freedv_get_n_nom_modem_samples(freedv)
#get n_tx_modem_samples which defines the size of the modulation object
n_tx_modem_samples = self.c_lib.freedv_get_n_tx_modem_samples(freedv)
n_tx_preamble_modem_samples = self.c_lib.freedv_get_n_tx_preamble_modem_samples(freedv)
n_tx_postamble_modem_samples = self.c_lib.freedv_get_n_tx_postamble_modem_samples(freedv)
bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(freedv) / 8)
payload_per_frame = bytes_per_frame - 2
mod_out = ctypes.c_short * n_tx_modem_samples
mod_out = mod_out()
mod_out_preamble = ctypes.c_short * n_tx_preamble_modem_samples
mod_out_preamble = mod_out_preamble()
mod_out_postamble = ctypes.c_short * n_tx_postamble_modem_samples
mod_out_postamble = mod_out_postamble()
self.streambuffer = bytearray()
self.c_lib.freedv_rawdatapreambletx(freedv, mod_out_preamble)
self.streambuffer += bytes(mod_out_preamble)
# loop through list of frames per burst
for n in range(0, len(frames)):
# create TX buffer
buffer = bytearray(payload_per_frame)
# set buffersize to length of data which will be send
buffer[:len(frames[n])] = frames[n]
crc = ctypes.c_ushort(self.c_lib.freedv_gen_crc16(bytes(buffer), payload_per_frame)) # generate CRC16
# convert crc to 2 byte hex string
crc = crc.value.to_bytes(2, byteorder='big')
buffer += crc # append crc16 to buffer
data = (ctypes.c_ubyte * bytes_per_frame).from_buffer_copy(buffer)
# modulate DATA and safe it into mod_out pointer
self.c_lib.freedv_rawdatatx(freedv, mod_out, data)
self.streambuffer += bytes(mod_out)
self.c_lib.freedv_rawdatapostambletx(freedv, mod_out_postamble)
self.streambuffer += bytes(mod_out_postamble)
converted_audio = audioop.ratecv(self.streambuffer, 2, 1, self.MODEM_SAMPLE_RATE, self.AUDIO_SAMPLE_RATE_TX, None)
self.streambuffer = bytes(converted_audio[0])
# -------------- transmit audio
while self.ptt_and_wait(True):
pass
# this triggers writing buffer to audio stream
# this way we are able to run this non blocking
# this needs to be optimized!
self.audio_writing_to_stream = True
# wait until audio has been processed
while self.audio_writing_to_stream:
time.sleep(0.01)
static.CHANNEL_STATE = 'SENDING_DATA'
static.CHANNEL_STATE = 'RECEIVING_SIGNALLING'
self.ptt_and_wait(False)
# close codec2 instance
self.c_lib.freedv_close(freedv)
return True
# --------------------------------------------------------------------------------------------------------
def receive(self):
freedv_mode_datac0 = 14
freedv_mode_datac1 = 10
freedv_mode_datac3 = 12
# DATAC0
self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte)
datac0_freedv = self.c_lib.freedv_open(freedv_mode_datac0)
self.c_lib.freedv_get_bits_per_modem_frame(datac0_freedv)
datac0_bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(datac0_freedv)/8)
datac0_n_max_modem_samples = self.c_lib.freedv_get_n_max_modem_samples(datac0_freedv)
# bytes_per_frame
datac0_bytes_out = (ctypes.c_ubyte * datac0_bytes_per_frame)
datac0_bytes_out = datac0_bytes_out() # get pointer from bytes_out
self.c_lib.freedv_set_frames_per_burst(datac0_freedv, 1)
datac0_modem_stats_snr = c_float()
datac0_modem_stats_sync = c_int()
datac0_buffer = bytes()
static.FREEDV_SIGNALLING_BYTES_PER_FRAME = datac0_bytes_per_frame
static.FREEDV_SIGNALLING_PAYLOAD_PER_FRAME = datac0_bytes_per_frame - 2
# DATAC1
self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte)
datac1_freedv = self.c_lib.freedv_open(freedv_mode_datac1)
datac1_bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(datac1_freedv)/8)
datac1_n_max_modem_samples = self.c_lib.freedv_get_n_max_modem_samples(datac1_freedv)
# bytes_per_frame
datac1_bytes_out = (ctypes.c_ubyte * datac1_bytes_per_frame)
datac1_bytes_out = datac1_bytes_out() # get pointer from bytes_out
self.c_lib.freedv_set_frames_per_burst(datac1_freedv, 1)
datac1_modem_stats_snr = c_float()
datac1_modem_stats_sync = c_int()
datac1_buffer = bytes()
# DATAC3
self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte)
datac3_freedv = self.c_lib.freedv_open(freedv_mode_datac3)
datac3_bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(datac3_freedv)/8)
datac3_n_max_modem_samples = self.c_lib.freedv_get_n_max_modem_samples(datac3_freedv)
# bytes_per_frame
datac3_bytes_out = (ctypes.c_ubyte * datac3_bytes_per_frame)
datac3_bytes_out = datac3_bytes_out() # get pointer from bytes_out
self.c_lib.freedv_set_frames_per_burst(datac3_freedv, 1)
datac3_modem_stats_snr = c_float()
datac3_modem_stats_sync = c_int()
datac3_buffer = bytes()
'''
if mode == static.ARQ_DATA_CHANNEL_MODE:
static.FREEDV_DATA_BYTES_PER_FRAME = bytes_per_frame
static.FREEDV_DATA_PAYLOAD_PER_FRAME = bytes_per_frame - 2
self.c_lib.freedv_set_frames_per_burst(freedv, 0)
else:
#pass
self.c_lib.freedv_set_frames_per_burst(freedv, 0)
'''
fft_buffer = bytes()
while True:
'''
# refresh vars, so the correct parameters of the used mode are set
if mode == static.ARQ_DATA_CHANNEL_MODE:
static.FREEDV_DATA_BYTES_PER_FRAME = bytes_per_frame
static.FREEDV_DATA_PAYLOAD_PER_FRAME = bytes_per_frame - 2
'''
data_in = bytes()
data_in = self.stream_rx.read(self.AUDIO_CHUNKS, exception_on_overflow=False)
#self.fft_data = data_in
data_in = audioop.ratecv(data_in, 2, 1, self.AUDIO_SAMPLE_RATE_RX, self.MODEM_SAMPLE_RATE, None)
data_in = data_in[0] # .rstrip(b'\x00')
#self.fft_data = data_in
# we need to set nin * 2 beause of byte size in array handling
datac0_nin = self.c_lib.freedv_nin(datac0_freedv) * 2
datac1_nin = self.c_lib.freedv_nin(datac1_freedv) * 2
datac3_nin = self.c_lib.freedv_nin(datac3_freedv) * 2
# refill buffer only if every mode has worked with its data
if (len(datac0_buffer) < (datac0_nin*2)) and (len(datac1_buffer) < (datac1_nin*2)) and (len(datac3_buffer) < (datac3_nin*2)):
datac0_buffer += data_in
datac1_buffer += data_in
datac3_buffer += data_in
# refill fft_data buffer so we can plot a fft
if len(self.fft_data) < 1024:
self.fft_data += data_in
# DECODING DATAC0
if len(datac0_buffer) >= (datac0_nin):
datac0_audio = datac0_buffer[:datac0_nin]
datac0_buffer = datac0_buffer[datac0_nin:]
# print(len(datac0_audio))
self.c_lib.freedv_rawdatarx.argtype = [ctypes.POINTER(ctypes.c_ubyte), datac0_bytes_out, datac0_audio]
nbytes = self.c_lib.freedv_rawdatarx(datac0_freedv, datac0_bytes_out, datac0_audio) # demodulate audio
sync = self.c_lib.freedv_get_rx_status(datac0_freedv)
if sync != 0 and nbytes != 0:
# calculate snr and scatter
self.get_scatter(datac0_freedv)
self.calculate_snr(datac0_freedv)
datac0_task = threading.Thread(target=self.process_data, args=[datac0_bytes_out, datac0_freedv, datac0_bytes_per_frame])
#datac0_task.start()
self.process_data(datac0_bytes_out, datac0_freedv, datac0_bytes_per_frame)
# DECODING DATAC1
if len(datac1_buffer) >= (datac1_nin):
datac1_audio = datac1_buffer[:datac1_nin]
datac1_buffer = datac1_buffer[datac1_nin:]
# print(len(datac1_audio))
self.c_lib.freedv_rawdatarx.argtype = [ctypes.POINTER(ctypes.c_ubyte), datac1_bytes_out, datac1_audio]
nbytes = self.c_lib.freedv_rawdatarx(datac1_freedv, datac1_bytes_out, datac1_audio) # demodulate audio
sync = self.c_lib.freedv_get_rx_status(datac1_freedv)
if sync != 0 and nbytes != 0:
# calculate snr and scatter
self.get_scatter(datac1_freedv)
self.calculate_snr(datac1_freedv)
datac1_task = threading.Thread(target=self.process_data, args=[datac1_bytes_out, datac1_freedv, datac1_bytes_per_frame])
datac1_task.start()
#print(bytes(datac1_bytes_out))
#self.process_data(datac1_bytes_out, datac1_freedv, datac1_bytes_per_frame)
# DECODING DATAC3
if len(datac3_buffer) >= (datac3_nin):
datac3_audio = datac3_buffer[:datac3_nin]
datac3_buffer = datac3_buffer[datac3_nin:]
self.c_lib.freedv_rawdatarx.argtype = [ctypes.POINTER(ctypes.c_ubyte), datac3_bytes_out, datac3_audio]
nbytes = self.c_lib.freedv_rawdatarx(datac3_freedv, datac3_bytes_out, datac3_audio) # demodulate audio
sync = self.c_lib.freedv_get_rx_status(datac3_freedv)
if sync != 0 and nbytes != 0:
# calculate snr and scatter
#self.get_scatter(datac3_freedv)
self.calculate_snr(datac3_freedv)
datac3_task = threading.Thread(target=self.process_data, args=[datac3_bytes_out, datac3_freedv, datac3_bytes_per_frame])
datac3_task.start()
# forward data only if broadcast or we are the receiver
# bytes_out[1:2] == callsign check for signalling frames, bytes_out[6:7] == callsign check for data frames, bytes_out[1:2] == b'\x01' --> broadcasts like CQ
# we could also create an own function, which returns True. In this case we could add callsign blacklists, whitelists and so on
def process_data(self, bytes_out, freedv, bytes_per_frame):
if bytes(bytes_out[1:2]) == static.MYCALLSIGN_CRC8 or bytes(bytes_out[6:7]) == static.MYCALLSIGN_CRC8 or bytes(bytes_out[1:2]) == b'\x01':
# CHECK IF FRAMETYPE IS BETWEEN 10 and 50 ------------------------
frametype = int.from_bytes(bytes(bytes_out[:1]), "big")
frame = frametype - 10
n_frames_per_burst = int.from_bytes(bytes(bytes_out[1:2]), "big")
#self.c_lib.freedv_set_frames_per_burst(freedv_data, n_frames_per_burst);
if 50 >= frametype >= 10:
# force, if we don't simulate a loss of the third frame
force = True
if frame != 3 or force == True:
# send payload data to arq checker without CRC16
data_handler.arq_data_received(bytes(bytes_out[:-2]), bytes_per_frame)
#print("static.ARQ_RX_BURST_BUFFER.count(None) " + str(static.ARQ_RX_BURST_BUFFER.count(None)))
if static.RX_BURST_BUFFER.count(None) <= 1:
logging.debug("FULL BURST BUFFER ---> UNSYNC")
self.c_lib.freedv_set_sync(freedv, 0)
else:
logging.critical(
"---------------------------SIMULATED MISSING FRAME")
force = True
# BURST ACK
elif frametype == 60:
logging.debug("ACK RECEIVED....")
data_handler.burst_ack_received()
# FRAME ACK
elif frametype == 61:
logging.debug("FRAME ACK RECEIVED....")
data_handler.frame_ack_received()
# FRAME RPT
elif frametype == 62:
logging.debug("REPEAT REQUEST RECEIVED....")
data_handler.burst_rpt_received(bytes_out[:-2])
# CQ FRAME
elif frametype == 200:
logging.debug("CQ RECEIVED....")
data_handler.received_cq(bytes_out[:-2])
# PING FRAME
elif frametype == 210:
logging.debug("PING RECEIVED....")
data_handler.received_ping(bytes_out[:-2])
# PING ACK
elif frametype == 211:
logging.debug("PING ACK RECEIVED....")
data_handler.received_ping_ack(bytes_out[:-2])
# ARQ FILE TRANSFER RECEIVED!
elif frametype == 225:
logging.debug("ARQ arq_received_data_channel_opener RECEIVED")
data_handler.arq_received_data_channel_opener(bytes_out[:-2])
# ARQ CHANNEL IS OPENED
elif frametype == 226:
logging.debug("ARQ arq_received_channel_is_open RECEIVED")
data_handler.arq_received_channel_is_open(bytes_out[:-2])
# ARQ CONNECT ACK / KEEP ALIVE
elif frametype == 230:
logging.debug("BEACON RECEIVED")
data_handler.received_beacon(bytes_out[:-2])
else:
logging.info("OTHER FRAME: " + str(bytes_out[:-2]))
print(frametype)
# DO UNSYNC AFTER LAST BURST by checking the frame nums against the total frames per burst
if frame == n_frames_per_burst:
logging.debug("LAST FRAME ---> UNSYNC")
self.c_lib.freedv_set_sync(freedv, 0) # FORCE UNSYNC
else:
# for debugging purposes to receive all data
pass
# print(bytes_out[:-2])
def get_scatter(self, freedv):
modemStats = MODEMSTATS()
self.c_lib.freedv_get_modem_extended_stats.restype = None
self.c_lib.freedv_get_modem_extended_stats(freedv, ctypes.byref(modemStats))
scatterdata = []
scatterdata_small = []
for i in range(MODEM_STATS_NC_MAX):
for j in range(MODEM_STATS_NR_MAX):
# check if odd or not to get every 2nd item for x
if (j % 2) == 0:
xsymbols = round(modemStats.rx_symbols[i][j]/1000)
ysymbols = round(modemStats.rx_symbols[i][j+1]/1000)
# check if value 0.0 or has real data
if xsymbols != 0.0 and ysymbols != 0.0:
scatterdata.append({"x": xsymbols, "y": ysymbols})
# only append scatter data if new data arrived
if 150 > len(scatterdata) > 0:
static.SCATTER = scatterdata
else:
# only take every tenth data point
scatterdata_small = scatterdata[::10]
static.SCATTER = scatterdata_small
def calculate_ber(self, freedv):
Tbits = self.c_lib.freedv_get_total_bits(freedv)
Terrs = self.c_lib.freedv_get_total_bit_errors(freedv)
if Tbits != 0:
ber = (Terrs / Tbits) * 100
static.BER = int(ber)
self.c_lib.freedv_set_total_bit_errors(freedv, 0)
self.c_lib.freedv_set_total_bits(freedv, 0)
def calculate_snr(self, freedv):
modem_stats_snr = c_float()
modem_stats_sync = c_int()
self.c_lib.freedv_get_modem_stats(freedv, byref(
modem_stats_sync), byref(modem_stats_snr))
modem_stats_snr = modem_stats_snr.value
try:
static.SNR = round(modem_stats_snr, 1)
except:
static.SNR = 0
def get_radio_stats(self):
while True:
time.sleep(0.1)
static.HAMLIB_FREQUENCY = int(self.my_rig.get_freq())
(hamlib_mode, static.HAMLIB_BANDWITH) = self.my_rig.get_mode()
static.HAMLIB_MODE = Hamlib.rig_strrmode(hamlib_mode)
#static.HAMLIB_FREQUENCY = rigctld.get_frequency()
#static.HAMLIB_MODE = rigctld.get_mode()[0]
#static.HAMLIB_BANDWITH = rigctld.get_mode()[1]
def calculate_fft(self):
while True:
time.sleep(0.01)
# WE NEED TO OPTIMIZE THIS!
if len(self.fft_data) >= 1024:
data_in = self.fft_data
self.fft_data = bytes()
# https://gist.github.com/ZWMiller/53232427efc5088007cab6feee7c6e4c
audio_data = np.fromstring(data_in, np.int16)
# Fast Fourier Transform, 10*log10(abs) is to scale it to dB
# and make sure it's not imaginary
try:
fftarray = np.fft.rfft(audio_data)
# set value 0 to 1 to avoid division by zero
fftarray[fftarray == 0] = 1
dfft = 10.*np.log10(abs(fftarray))
dfftlist = dfft.tolist()
# send fft only if receiving
if static.CHANNEL_STATE == 'RECEIVING_SIGNALLING' or static.CHANNEL_STATE == 'RECEIVING_DATA':
#static.FFT = dfftlist[20:100]
static.FFT = dfftlist
except:
print("setting fft = 0")
# else 0
static.FFT = [0] * 400
else:
pass