FreeDATA/modem/audio.py

327 lines
11 KiB
Python

"""
Gather information about audio devices.
"""
import multiprocessing
import crcengine
import sounddevice as sd
import structlog
import numpy as np
import queue
log = structlog.get_logger("audio")
# crc algorithm for unique audio device names
crc_algorithm = crcengine.new("crc16-ccitt-false") # load crc16 library
def get_audio_devices():
"""
return list of input and output audio devices in own process to avoid crashes of portaudio on raspberry pi
also uses a process data manager
"""
# we need to run this on Windows for multiprocessing support
# multiprocessing.freeze_support()
# multiprocessing.get_context("spawn")
# we need to reset and initialize sounddevice before running the multiprocessing part.
# If we are not doing this at this early point, not all devices will be displayed
#sd._terminate()
#sd._initialize()
# log.debug("[AUD] get_audio_devices")
with multiprocessing.Manager() as manager:
proxy_input_devices = manager.list()
proxy_output_devices = manager.list()
# print(multiprocessing.get_start_method())
proc = multiprocessing.Process(
target=fetch_audio_devices, args=(proxy_input_devices, proxy_output_devices)
)
proc.start()
proc.join()
# additional logging for audio devices
# log.debug("[AUD] get_audio_devices: input_devices:", list=f"{proxy_input_devices}")
# log.debug("[AUD] get_audio_devices: output_devices:", list=f"{proxy_output_devices}")
return list(proxy_input_devices), list(proxy_output_devices)
def device_crc(device) -> str:
crc_hwid = crc_algorithm(bytes(f"{device['name']}.{device['hostapi']}", encoding="utf-8"))
crc_hwid = crc_hwid.to_bytes(2, byteorder="big")
crc_hwid = crc_hwid.hex()
return crc_hwid
def fetch_audio_devices(input_devices, output_devices):
"""
get audio devices from portaudio
Args:
input_devices: proxy variable for input devices
output_devices: proxy variable for output devices
Returns:
"""
devices = sd.query_devices(device=None, kind=None)
for index, device in enumerate(devices):
# Use a try/except block because Windows doesn't have an audio device range
try:
name = device["name"]
# Ignore some Flex Radio devices to make device selection simpler
if name.startswith("DAX RESERVED") or name.startswith("DAX IQ"):
continue
max_output_channels = device["max_output_channels"]
max_input_channels = device["max_input_channels"]
except KeyError:
continue
except Exception as err:
print(err)
max_input_channels = 0
max_output_channels = 0
if max_input_channels > 0:
hostapi_name = sd.query_hostapis(device['hostapi'])['name']
new_input_device = {"id": device_crc(device),
"name": device['name'],
"api": hostapi_name,
"native_index":index}
# check if device not in device list
if new_input_device not in input_devices:
input_devices.append(new_input_device)
if max_output_channels > 0:
hostapi_name = sd.query_hostapis(device['hostapi'])['name']
new_output_device = {"id": device_crc(device),
"name": device['name'],
"api": hostapi_name,
"native_index":index}
# check if device not in device list
if new_output_device not in output_devices:
output_devices.append(new_output_device)
# FreeData uses the crc as id inside the configuration
# SD lib uses a numerical id which is essentially an
# index of the device within the list
# returns (id, name)
def get_device_index_from_crc(crc, isInput: bool):
try:
in_devices = []
out_devices = []
fetch_audio_devices(in_devices, out_devices)
if isInput:
detected_devices = in_devices
else:
detected_devices = out_devices
for i, dev in enumerate(detected_devices):
if dev['id'] == crc:
return (dev['native_index'], dev['name'])
except Exception as e:
log.warning(f"Audio device {crc} not detected ", devices=detected_devices, isInput=isInput)
return [None, None]
def test_audio_devices(input_id: str, output_id: str) -> list:
test_result = [False, False]
try:
result = get_device_index_from_crc(input_id, True)
if result is None:
# in_dev_index, in_dev_name = None, None
raise ValueError(f"[Audio-Test] Invalid input device index {input_id}.")
else:
in_dev_index, in_dev_name = result
sd.check_input_settings(
device=in_dev_index,
channels=1,
dtype="int16",
samplerate=48000,
)
test_result[0] = True
except (sd.PortAudioError, ValueError) as e:
log.warning(f"[Audio-Test] Input device error ({input_id}):", e=e)
test_result[0] = False
try:
result = get_device_index_from_crc(output_id, False)
if result is None:
# out_dev_index, out_dev_name = None, None
raise ValueError(f"[Audio-Test] Invalid output device index {output_id}.")
else:
out_dev_index, out_dev_name = result
sd.check_output_settings(
device=out_dev_index,
channels=1,
dtype="int16",
samplerate=48000,
)
test_result[1] = True
except (sd.PortAudioError, ValueError) as e:
log.warning(f"[Audio-Test] Output device error ({output_id}):", e=e)
test_result[1] = False
sd._terminate()
sd._initialize()
return test_result
def set_audio_volume(datalist: np.ndarray, dB: float) -> np.ndarray:
"""
Scale values for the provided audio samples by dB.
:param datalist: Audio samples to scale
:type datalist: np.ndarray
:param dB: Decibels to scale samples, constrained to the range [-50, 50]
:type dB: float
:return: Scaled audio samples
:rtype: np.ndarray
"""
try:
dB = float(dB)
except ValueError as e:
print(f"[MDM] Changing audio volume failed with error: {e}")
dB = 0.0 # 0 dB means no change
# Clip dB value to the range [-50, 50]
dB = np.clip(dB, -30, 20)
# Ensure datalist is an np.ndarray
if not isinstance(datalist, np.ndarray):
print("[MDM] Invalid data type for datalist. Expected np.ndarray.")
return datalist
# Convert dB to linear scale
scale_factor = 10 ** (dB / 20)
# Scale samples
scaled_data = datalist * scale_factor
# Clip values to int16 range and convert data type
return np.clip(scaled_data, -32768, 32767).astype(np.int16)
RMS_COUNTER = 0
CHANNEL_BUSY_DELAY = 0
def calculate_fft(data, fft_queue, states) -> None:
"""
Calculate an average signal strength of the channel to assess
whether the channel is "busy."
"""
# Initialize dbfs counter
# rms_counter = 0
# https://gist.github.com/ZWMiller/53232427efc5088007cab6feee7c6e4c
# Fast Fourier Transform, 10*log10(abs) is to scale it to dB
# and make sure it's not imaginary
global RMS_COUNTER, CHANNEL_BUSY_DELAY
try:
fftarray = np.fft.rfft(data)
# Set value 0 to 1 to avoid division by zero
fftarray[fftarray == 0] = 1
dfft = 10.0 * np.log10(abs(fftarray))
# get average of dfft
avg = np.mean(dfft)
# Detect signals which are higher than the
# average + 10 (+10 smoothes the output).
# Data higher than the average must be a signal.
# Therefore we are setting it to 100 so it will be highlighted
# Have to do this when we are not transmitting so our
# own sending data will not affect this too much
if not states.isTransmitting():
dfft[dfft > avg + 15] = 100
# Calculate audio dbfs
# https://stackoverflow.com/a/9763652
# calculate dbfs every 50 cycles for reducing CPU load
RMS_COUNTER += 1
if RMS_COUNTER > 5:
d = np.frombuffer(data, np.int16).astype(np.float32)
# calculate RMS and then dBFS
# https://dsp.stackexchange.com/questions/8785/how-to-compute-dbfs
# try except for avoiding runtime errors by division/0
try:
rms = int(np.sqrt(np.max(d ** 2)))
if rms == 0:
raise ZeroDivisionError
audio_dbfs = 20 * np.log10(rms / 32768)
states.set("audio_dbfs", audio_dbfs)
except Exception as e:
states.set("audio_dbfs", -100)
RMS_COUNTER = 0
# Convert data to int to decrease size
dfft = dfft.astype(int)
# Create list of dfft
dfftlist = dfft.tolist()
# Reduce area where the busy detection is enabled
# We want to have this in correlation with mode bandwidth
# TODO This is not correctly and needs to be checked for correct maths
# dfftlist[0:1] = 10,15Hz
# Bandwidth[Hz] / 10,15
# narrowband = 563Hz = 56
# wideband = 1700Hz = 167
# 1500Hz = 148
# 2700Hz = 266
# 3200Hz = 315
# slot
slot = 0
slot1 = [0, 65]
slot2 = [65,120]
slot3 = [120, 176]
slot4 = [176, 231]
slot5 = [231, len(dfftlist)]
slotbusy = [False,False,False,False,False]
# Set to true if we should increment delay count; else false to decrement
addDelay=False
for range in [slot1, slot2, slot3, slot4, slot5]:
range_start = range[0]
range_end = range[1]
# define the area, we are detecting busy state
slotdfft = dfft[range_start:range_end]
# Check for signals higher than average by checking for "100"
# If we have a signal, increment our channel_busy delay counter
# so we have a smoother state toggle
if np.sum(slotdfft[slotdfft > avg + 15]) >= 200 and not states.isTransmitting():
addDelay=True
slotbusy[slot]=True
#states.channel_busy_slot[slot] = True
# increment slot
slot += 1
states.set_channel_slot_busy(slotbusy)
if addDelay:
# Limit delay counter to a maximum of 200. The higher this value,
# the longer we will wait until releasing state
states.set_channel_busy_condition_traffic(True)
CHANNEL_BUSY_DELAY = min(CHANNEL_BUSY_DELAY + 10, 200)
else:
# Decrement channel busy counter if no signal has been detected.
CHANNEL_BUSY_DELAY = max(CHANNEL_BUSY_DELAY - 1, 0)
# When our channel busy counter reaches 0, toggle state to False
if CHANNEL_BUSY_DELAY == 0:
states.set_channel_busy_condition_traffic(False)
# erase queue if greater than 3
if fft_queue.qsize() >= 1:
fft_queue = queue.Queue()
fft_queue.put(dfftlist[:315]) # 315 --> bandwidth 3200
except Exception as err:
print(f"[MDM] calculate_fft: Exception: {err}")