#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Dec 23 07:04:24 2020 @author: DJ2LS """ import sys import ctypes from ctypes import * import pathlib import audioop #import asyncio import logging import time import threading import atexit import numpy as np import pyaudio import helpers import static import data_handler # sys.path.append("hamlib/linux") try: import Hamlib print("running Hamlib from Sys Path") except ImportError: from hamlib.linux import Hamlib print("running Hamlib from precompiled bundle") else: # place for rigctld pass #import rigctld #rigctld = rigctld.Rigctld() MODEM_STATS_NR_MAX = 320 MODEM_STATS_NC_MAX = 51 class MODEMSTATS(ctypes.Structure): _fields_ = [ ("Nc", ctypes.c_int), ("snr_est", ctypes.c_float), ("rx_symbols", (ctypes.c_float * MODEM_STATS_NR_MAX)*MODEM_STATS_NC_MAX), ("nr", ctypes.c_int), ("sync", ctypes.c_int), ("foff", ctypes.c_float), ("rx_timing", ctypes.c_float), ("clock_offset", ctypes.c_float), ("sync_metric", ctypes.c_float), ("pre", ctypes.c_int), ("post", ctypes.c_int), ("uw_fails", ctypes.c_int), ] class RF(): def __init__(self): self.AUDIO_SAMPLE_RATE_RX = 48000 self.AUDIO_SAMPLE_RATE_TX = 48000 self.MODEM_SAMPLE_RATE = 8000 self.AUDIO_FRAMES_PER_BUFFER = 8192 self.AUDIO_CHUNKS = 48 #8 * (self.AUDIO_SAMPLE_RATE_RX/self.MODEM_SAMPLE_RATE) #48 self.AUDIO_CHANNELS = 1 # -------------------------------------------- LOAD FREEDV try: # we check at first for libcodec2 in root - necessary if we want to run it inside a pyinstaller binary libname = pathlib.Path("libcodec2.so.1.0") self.c_lib = ctypes.CDLL(libname) print("running libcodec from INTERNAL library") except: # if we cant load libcodec from root, we check for subdirectory # this is, if we want to run it without beeing build in a dev environment libname = pathlib.Path().absolute() / "codec2/build_linux/src/libcodec2.so.1.0" self.c_lib = ctypes.CDLL(libname) print("running libcodec from EXTERNAL library") # --------------------------------------------CREATE PYAUDIO INSTANCE self.p = pyaudio.PyAudio() atexit.register(self.p.terminate) # --------------------------------------------OPEN AUDIO CHANNEL RX self.stream_rx = self.p.open(format=pyaudio.paInt16, channels=self.AUDIO_CHANNELS, rate=self.AUDIO_SAMPLE_RATE_RX, frames_per_buffer=self.AUDIO_FRAMES_PER_BUFFER, input=True, input_device_index=static.AUDIO_INPUT_DEVICE ) # --------------------------------------------OPEN AUDIO CHANNEL TX self.stream_tx = self.p.open(format=pyaudio.paInt16, channels=1, rate=self.AUDIO_SAMPLE_RATE_TX, frames_per_buffer=self.AUDIO_FRAMES_PER_BUFFER, # n_nom_modem_samples output=True, output_device_index=static.AUDIO_OUTPUT_DEVICE, # static.AUDIO_OUTPUT_DEVICE ) self.streambuffer = bytes(0) self.audio_writing_to_stream = False # --------------------------------------------START DECODER THREAD DECODER_THREAD = threading.Thread(target=self.receive, name="DECODER_THREAD") DECODER_THREAD.start() PLAYBACK_THREAD = threading.Thread(target=self.play_audio, name="PLAYBACK_THREAD") PLAYBACK_THREAD.start() self.fft_data = bytes() FFT_THREAD = threading.Thread(target=self.calculate_fft, name="FFT_THREAD") FFT_THREAD.start() # --------------------------------------------CONFIGURE HAMLIB # my_rig.set_ptt(Hamlib.RIG_PTT_RIG,0) # my_rig.set_ptt(Hamlib.RIG_PTT_SERIAL_DTR,0) # my_rig.set_ptt(Hamlib.RIG_PTT_SERIAL_RTS,1) #self.my_rig.set_conf("dtr_state", "OFF") #my_rig.set_conf("rts_state", "OFF") #self.my_rig.set_conf("ptt_type", "RTS") #my_rig.set_conf("ptt_type", "RIG_PTT_SERIAL_RTS") # try to init hamlib try: Hamlib.rig_set_debug(Hamlib.RIG_DEBUG_NONE) self.my_rig = Hamlib.Rig(int(static.HAMLIB_DEVICE_ID)) self.my_rig.set_conf("rig_pathname", static.HAMLIB_DEVICE_PORT) self.my_rig.set_conf("retry", "5") self.my_rig.set_conf("serial_speed", static.HAMLIB_SERIAL_SPEED) self.my_rig.set_conf("serial_handshake", "None") self.my_rig.set_conf("stop_bits", "1") self.my_rig.set_conf("data_bits", "8") if static.HAMLIB_PTT_TYPE == 'RIG': self.hamlib_ptt_type = Hamlib.RIG_PTT_RIG elif static.HAMLIB_PTT_TYPE == 'DTR-H': self.hamlib_ptt_type = Hamlib.RIG_PTT_SERIAL_DTR self.my_rig.set_conf("dtr_state", "HIGH") self.my_rig.set_conf("ptt_type", "DTR") elif static.HAMLIB_PTT_TYPE == 'DTR-L': self.hamlib_ptt_type = Hamlib.RIG_PTT_SERIAL_DTR self.my_rig.set_conf("dtr_state", "LOW") self.my_rig.set_conf("ptt_type", "DTR") elif static.HAMLIB_PTT_TYPE == 'RTS': self.hamlib_ptt_type = Hamlib.RIG_PTT_SERIAL_RTS self.my_rig.set_conf("dtr_state", "OFF") self.my_rig.set_conf("ptt_type", "RTS") elif static.HAMLIB_PTT_TYPE == 'PARALLEL': self.hamlib_ptt_type = Hamlib.RIG_PTT_PARALLEL elif static.HAMLIB_PTT_TYPE == 'MICDATA': self.hamlib_ptt_type = Hamlib.RIG_PTT_RIG_MICDATA elif static.HAMLIB_PTT_TYPE == 'CM108': self.hamlib_ptt_type = Hamlib.RIG_PTT_CM108 else: # static.HAMLIB_PTT_TYPE == 'RIG_PTT_NONE': self.hamlib_ptt_type = Hamlib.RIG_PTT_NONE self.my_rig.open() atexit.register(self.my_rig.close) # set rig mode to USB self.my_rig.set_mode(Hamlib.RIG_MODE_USB) # start thread for getting hamlib data HAMLIB_THREAD = threading.Thread( target=self.get_radio_stats, name="HAMLIB_THREAD") HAMLIB_THREAD.start() except: print("Unexpected error:", sys.exc_info()[0]) print("can't open rig") sys.exit("hamlib error") # -------------------------------------------------------------------------------------------------------- def ptt_and_wait(self, state): static.PTT_STATE = state if state: self.my_rig.set_ptt(self.hamlib_ptt_type, 1) # rigctld.ptt_enable() ptt_toggle_timeout = time.time() + 0.5 while time.time() < ptt_toggle_timeout: pass else: ptt_toggle_timeout = time.time() + 0.5 while time.time() < ptt_toggle_timeout: pass self.my_rig.set_ptt(self.hamlib_ptt_type, 0) # rigctld.ptt_disable() return False def play_audio(self): while True: time.sleep(0.01) # while len(self.streambuffer) > 0: # time.sleep(0.01) if len(self.streambuffer) > 0 and self.audio_writing_to_stream: self.streambuffer = bytes(self.streambuffer) # we need t wait a little bit until the buffer is filled. If we are not waiting, we are sending empty data time.sleep(0.1) self.stream_tx.write(self.streambuffer) # clear stream buffer after sending self.streambuffer = bytes() self.audio_writing_to_stream = False # -------------------------------------------------------------------------------------------------------- def transmit_signalling(self, data_out, count): state_before_transmit = static.CHANNEL_STATE static.CHANNEL_STATE = 'SENDING_SIGNALLING' # print(static.CHANNEL_STATE) freedv_signalling_mode = 14 self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte) freedv = self.c_lib.freedv_open(freedv_signalling_mode) bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(freedv) / 8) payload_per_frame = bytes_per_frame - 2 n_nom_modem_samples = self.c_lib.freedv_get_n_nom_modem_samples(freedv) n_tx_modem_samples = self.c_lib.freedv_get_n_tx_modem_samples(freedv) n_tx_preamble_modem_samples = self.c_lib.freedv_get_n_tx_preamble_modem_samples(freedv) n_tx_postamble_modem_samples = self.c_lib.freedv_get_n_tx_postamble_modem_samples(freedv) mod_out = ctypes.c_short * n_tx_modem_samples mod_out = mod_out() mod_out_preamble = ctypes.c_short * n_tx_preamble_modem_samples mod_out_preamble = mod_out_preamble() mod_out_postamble = ctypes.c_short * n_tx_postamble_modem_samples mod_out_postamble = mod_out_postamble() buffer = bytearray(payload_per_frame) # set buffersize to length of data which will be send buffer[:len(data_out)] = data_out crc = ctypes.c_ushort(self.c_lib.freedv_gen_crc16(bytes(buffer), payload_per_frame)) # generate CRC16 # convert crc to 2 byte hex string crc = crc.value.to_bytes(2, byteorder='big') buffer += crc # append crc16 to buffer data = (ctypes.c_ubyte * bytes_per_frame).from_buffer_copy(buffer) self.c_lib.freedv_rawdatapreambletx(freedv, mod_out_preamble) # modulate DATA and safe it into mod_out pointer self.c_lib.freedv_rawdatatx(freedv, mod_out, data) self.c_lib.freedv_rawdatapostambletx(freedv, mod_out_postamble) self.streambuffer = bytearray() self.streambuffer += bytes(mod_out_preamble) self.streambuffer += bytes(mod_out) self.streambuffer += bytes(mod_out_postamble) converted_audio = audioop.ratecv(self.streambuffer, 2, 1, self.MODEM_SAMPLE_RATE, self.AUDIO_SAMPLE_RATE_TX, None) self.streambuffer = bytes(converted_audio[0]) # append frame again with as much as in count defined for i in range(1, count): self.streambuffer += bytes(converted_audio[0]) while self.ptt_and_wait(True): pass # start writing audio data to audio stream self.audio_writing_to_stream = True # wait until audio has been processed while self.audio_writing_to_stream: time.sleep(0.01) static.CHANNEL_STATE = 'SENDING_SIGNALLING' self.ptt_and_wait(False) # we have a problem with the receiving state ##static.CHANNEL_STATE = state_before_transmit if state_before_transmit != 'RECEIVING_DATA': static.CHANNEL_STATE = 'RECEIVING_SIGNALLING' else: static.CHANNEL_STATE = state_before_transmit self.c_lib.freedv_close(freedv) return True # -------------------------------------------------------------------------------------------------------- # GET ARQ BURST FRAME VOM BUFFER AND MODULATE IT def transmit_arq_burst(self, mode, frames): # we could place this timing part inside the modem... # lets see if this is a good idea.. # we need to update our timeout timestamp state_before_transmit = static.CHANNEL_STATE static.CHANNEL_STATE = 'SENDING_DATA' self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte) freedv = self.c_lib.freedv_open(mode) n_nom_modem_samples = self.c_lib.freedv_get_n_nom_modem_samples(freedv) #get n_tx_modem_samples which defines the size of the modulation object n_tx_modem_samples = self.c_lib.freedv_get_n_tx_modem_samples(freedv) n_tx_preamble_modem_samples = self.c_lib.freedv_get_n_tx_preamble_modem_samples(freedv) n_tx_postamble_modem_samples = self.c_lib.freedv_get_n_tx_postamble_modem_samples(freedv) bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(freedv) / 8) payload_per_frame = bytes_per_frame - 2 mod_out = ctypes.c_short * n_tx_modem_samples mod_out = mod_out() mod_out_preamble = ctypes.c_short * n_tx_preamble_modem_samples mod_out_preamble = mod_out_preamble() mod_out_postamble = ctypes.c_short * n_tx_postamble_modem_samples mod_out_postamble = mod_out_postamble() self.streambuffer = bytearray() self.c_lib.freedv_rawdatapreambletx(freedv, mod_out_preamble) self.streambuffer += bytes(mod_out_preamble) # loop through list of frames per burst for n in range(0, len(frames)): # create TX buffer buffer = bytearray(payload_per_frame) # set buffersize to length of data which will be send buffer[:len(frames[n])] = frames[n] crc = ctypes.c_ushort(self.c_lib.freedv_gen_crc16(bytes(buffer), payload_per_frame)) # generate CRC16 # convert crc to 2 byte hex string crc = crc.value.to_bytes(2, byteorder='big') buffer += crc # append crc16 to buffer data = (ctypes.c_ubyte * bytes_per_frame).from_buffer_copy(buffer) # modulate DATA and safe it into mod_out pointer self.c_lib.freedv_rawdatatx(freedv, mod_out, data) self.streambuffer += bytes(mod_out) self.c_lib.freedv_rawdatapostambletx(freedv, mod_out_postamble) self.streambuffer += bytes(mod_out_postamble) converted_audio = audioop.ratecv(self.streambuffer, 2, 1, self.MODEM_SAMPLE_RATE, self.AUDIO_SAMPLE_RATE_TX, None) self.streambuffer = bytes(converted_audio[0]) # -------------- transmit audio while self.ptt_and_wait(True): pass # this triggers writing buffer to audio stream # this way we are able to run this non blocking # this needs to be optimized! self.audio_writing_to_stream = True # wait until audio has been processed while self.audio_writing_to_stream: time.sleep(0.01) static.CHANNEL_STATE = 'SENDING_DATA' static.CHANNEL_STATE = 'RECEIVING_SIGNALLING' self.ptt_and_wait(False) # close codec2 instance self.c_lib.freedv_close(freedv) return True # -------------------------------------------------------------------------------------------------------- def receive(self): freedv_mode_datac0 = 14 freedv_mode_datac1 = 10 freedv_mode_datac3 = 12 # DATAC0 self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte) datac0_freedv = self.c_lib.freedv_open(freedv_mode_datac0) self.c_lib.freedv_get_bits_per_modem_frame(datac0_freedv) datac0_bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(datac0_freedv)/8) datac0_n_max_modem_samples = self.c_lib.freedv_get_n_max_modem_samples(datac0_freedv) # bytes_per_frame datac0_bytes_out = (ctypes.c_ubyte * datac0_bytes_per_frame) datac0_bytes_out = datac0_bytes_out() # get pointer from bytes_out self.c_lib.freedv_set_frames_per_burst(datac0_freedv, 1) datac0_modem_stats_snr = c_float() datac0_modem_stats_sync = c_int() datac0_buffer = bytes() static.FREEDV_SIGNALLING_BYTES_PER_FRAME = datac0_bytes_per_frame static.FREEDV_SIGNALLING_PAYLOAD_PER_FRAME = datac0_bytes_per_frame - 2 # DATAC1 self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte) datac1_freedv = self.c_lib.freedv_open(freedv_mode_datac1) datac1_bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(datac1_freedv)/8) datac1_n_max_modem_samples = self.c_lib.freedv_get_n_max_modem_samples(datac1_freedv) # bytes_per_frame datac1_bytes_out = (ctypes.c_ubyte * datac1_bytes_per_frame) datac1_bytes_out = datac1_bytes_out() # get pointer from bytes_out self.c_lib.freedv_set_frames_per_burst(datac1_freedv, 1) datac1_modem_stats_snr = c_float() datac1_modem_stats_sync = c_int() datac1_buffer = bytes() # DATAC3 self.c_lib.freedv_open.restype = ctypes.POINTER(ctypes.c_ubyte) datac3_freedv = self.c_lib.freedv_open(freedv_mode_datac3) datac3_bytes_per_frame = int(self.c_lib.freedv_get_bits_per_modem_frame(datac3_freedv)/8) datac3_n_max_modem_samples = self.c_lib.freedv_get_n_max_modem_samples(datac3_freedv) # bytes_per_frame datac3_bytes_out = (ctypes.c_ubyte * datac3_bytes_per_frame) datac3_bytes_out = datac3_bytes_out() # get pointer from bytes_out self.c_lib.freedv_set_frames_per_burst(datac3_freedv, 1) datac3_modem_stats_snr = c_float() datac3_modem_stats_sync = c_int() datac3_buffer = bytes() ''' if mode == static.ARQ_DATA_CHANNEL_MODE: static.FREEDV_DATA_BYTES_PER_FRAME = bytes_per_frame static.FREEDV_DATA_PAYLOAD_PER_FRAME = bytes_per_frame - 2 self.c_lib.freedv_set_frames_per_burst(freedv, 0) else: #pass self.c_lib.freedv_set_frames_per_burst(freedv, 0) ''' fft_buffer = bytes() while True: ''' # refresh vars, so the correct parameters of the used mode are set if mode == static.ARQ_DATA_CHANNEL_MODE: static.FREEDV_DATA_BYTES_PER_FRAME = bytes_per_frame static.FREEDV_DATA_PAYLOAD_PER_FRAME = bytes_per_frame - 2 ''' data_in = bytes() data_in = self.stream_rx.read(self.AUDIO_CHUNKS, exception_on_overflow=False) #self.fft_data = data_in data_in = audioop.ratecv(data_in, 2, 1, self.AUDIO_SAMPLE_RATE_RX, self.MODEM_SAMPLE_RATE, None) data_in = data_in[0] # .rstrip(b'\x00') #self.fft_data = data_in # we need to set nin * 2 beause of byte size in array handling datac0_nin = self.c_lib.freedv_nin(datac0_freedv) * 2 datac1_nin = self.c_lib.freedv_nin(datac1_freedv) * 2 datac3_nin = self.c_lib.freedv_nin(datac3_freedv) * 2 # refill buffer only if every mode has worked with its data if (len(datac0_buffer) < (datac0_nin*2)) and (len(datac1_buffer) < (datac1_nin*2)) and (len(datac3_buffer) < (datac3_nin*2)): datac0_buffer += data_in datac1_buffer += data_in datac3_buffer += data_in # refill fft_data buffer so we can plot a fft if len(self.fft_data) < 1024: self.fft_data += data_in # DECODING DATAC0 if len(datac0_buffer) >= (datac0_nin): datac0_audio = datac0_buffer[:datac0_nin] datac0_buffer = datac0_buffer[datac0_nin:] # print(len(datac0_audio)) self.c_lib.freedv_rawdatarx.argtype = [ctypes.POINTER(ctypes.c_ubyte), datac0_bytes_out, datac0_audio] nbytes = self.c_lib.freedv_rawdatarx(datac0_freedv, datac0_bytes_out, datac0_audio) # demodulate audio sync = self.c_lib.freedv_get_rx_status(datac0_freedv) if sync != 0 and nbytes != 0: # calculate snr and scatter self.get_scatter(datac0_freedv) self.calculate_snr(datac0_freedv) datac0_task = threading.Thread(target=self.process_data, args=[datac0_bytes_out, datac0_freedv, datac0_bytes_per_frame]) #datac0_task.start() self.process_data(datac0_bytes_out, datac0_freedv, datac0_bytes_per_frame) # DECODING DATAC1 if len(datac1_buffer) >= (datac1_nin): datac1_audio = datac1_buffer[:datac1_nin] datac1_buffer = datac1_buffer[datac1_nin:] # print(len(datac1_audio)) self.c_lib.freedv_rawdatarx.argtype = [ctypes.POINTER(ctypes.c_ubyte), datac1_bytes_out, datac1_audio] nbytes = self.c_lib.freedv_rawdatarx(datac1_freedv, datac1_bytes_out, datac1_audio) # demodulate audio sync = self.c_lib.freedv_get_rx_status(datac1_freedv) if sync != 0 and nbytes != 0: # calculate snr and scatter self.get_scatter(datac1_freedv) self.calculate_snr(datac1_freedv) datac1_task = threading.Thread(target=self.process_data, args=[datac1_bytes_out, datac1_freedv, datac1_bytes_per_frame]) datac1_task.start() #print(bytes(datac1_bytes_out)) #self.process_data(datac1_bytes_out, datac1_freedv, datac1_bytes_per_frame) # DECODING DATAC3 if len(datac3_buffer) >= (datac3_nin): datac3_audio = datac3_buffer[:datac3_nin] datac3_buffer = datac3_buffer[datac3_nin:] self.c_lib.freedv_rawdatarx.argtype = [ctypes.POINTER(ctypes.c_ubyte), datac3_bytes_out, datac3_audio] nbytes = self.c_lib.freedv_rawdatarx(datac3_freedv, datac3_bytes_out, datac3_audio) # demodulate audio sync = self.c_lib.freedv_get_rx_status(datac3_freedv) if sync != 0 and nbytes != 0: # calculate snr and scatter #self.get_scatter(datac3_freedv) self.calculate_snr(datac3_freedv) datac3_task = threading.Thread(target=self.process_data, args=[datac3_bytes_out, datac3_freedv, datac3_bytes_per_frame]) datac3_task.start() # forward data only if broadcast or we are the receiver # bytes_out[1:2] == callsign check for signalling frames, bytes_out[6:7] == callsign check for data frames, bytes_out[1:2] == b'\x01' --> broadcasts like CQ # we could also create an own function, which returns True. In this case we could add callsign blacklists, whitelists and so on def process_data(self, bytes_out, freedv, bytes_per_frame): if bytes(bytes_out[1:2]) == static.MYCALLSIGN_CRC8 or bytes(bytes_out[6:7]) == static.MYCALLSIGN_CRC8 or bytes(bytes_out[1:2]) == b'\x01': # CHECK IF FRAMETYPE IS BETWEEN 10 and 50 ------------------------ frametype = int.from_bytes(bytes(bytes_out[:1]), "big") frame = frametype - 10 n_frames_per_burst = int.from_bytes(bytes(bytes_out[1:2]), "big") #self.c_lib.freedv_set_frames_per_burst(freedv_data, n_frames_per_burst); if 50 >= frametype >= 10: # force, if we don't simulate a loss of the third frame force = True if frame != 3 or force == True: # send payload data to arq checker without CRC16 data_handler.arq_data_received(bytes(bytes_out[:-2]), bytes_per_frame) #print("static.ARQ_RX_BURST_BUFFER.count(None) " + str(static.ARQ_RX_BURST_BUFFER.count(None))) if static.RX_BURST_BUFFER.count(None) <= 1: logging.debug("FULL BURST BUFFER ---> UNSYNC") self.c_lib.freedv_set_sync(freedv, 0) else: logging.critical( "---------------------------SIMULATED MISSING FRAME") force = True # BURST ACK elif frametype == 60: logging.debug("ACK RECEIVED....") data_handler.burst_ack_received() # FRAME ACK elif frametype == 61: logging.debug("FRAME ACK RECEIVED....") data_handler.frame_ack_received() # FRAME RPT elif frametype == 62: logging.debug("REPEAT REQUEST RECEIVED....") data_handler.burst_rpt_received(bytes_out[:-2]) # CQ FRAME elif frametype == 200: logging.debug("CQ RECEIVED....") data_handler.received_cq(bytes_out[:-2]) # PING FRAME elif frametype == 210: logging.debug("PING RECEIVED....") data_handler.received_ping(bytes_out[:-2]) # PING ACK elif frametype == 211: logging.debug("PING ACK RECEIVED....") data_handler.received_ping_ack(bytes_out[:-2]) # ARQ FILE TRANSFER RECEIVED! elif frametype == 225: logging.debug("ARQ arq_received_data_channel_opener RECEIVED") data_handler.arq_received_data_channel_opener(bytes_out[:-2]) # ARQ CHANNEL IS OPENED elif frametype == 226: logging.debug("ARQ arq_received_channel_is_open RECEIVED") data_handler.arq_received_channel_is_open(bytes_out[:-2]) # ARQ CONNECT ACK / KEEP ALIVE elif frametype == 230: logging.debug("BEACON RECEIVED") data_handler.received_beacon(bytes_out[:-2]) else: logging.info("OTHER FRAME: " + str(bytes_out[:-2])) print(frametype) # DO UNSYNC AFTER LAST BURST by checking the frame nums against the total frames per burst if frame == n_frames_per_burst: logging.debug("LAST FRAME ---> UNSYNC") self.c_lib.freedv_set_sync(freedv, 0) # FORCE UNSYNC else: # for debugging purposes to receive all data pass # print(bytes_out[:-2]) def get_scatter(self, freedv): modemStats = MODEMSTATS() self.c_lib.freedv_get_modem_extended_stats.restype = None self.c_lib.freedv_get_modem_extended_stats(freedv, ctypes.byref(modemStats)) scatterdata = [] scatterdata_small = [] for i in range(MODEM_STATS_NC_MAX): for j in range(MODEM_STATS_NR_MAX): # check if odd or not to get every 2nd item for x if (j % 2) == 0: xsymbols = round(modemStats.rx_symbols[i][j]/1000) ysymbols = round(modemStats.rx_symbols[i][j+1]/1000) # check if value 0.0 or has real data if xsymbols != 0.0 and ysymbols != 0.0: scatterdata.append({"x": xsymbols, "y": ysymbols}) # only append scatter data if new data arrived if 150 > len(scatterdata) > 0: static.SCATTER = scatterdata else: # only take every tenth data point scatterdata_small = scatterdata[::10] static.SCATTER = scatterdata_small def calculate_ber(self, freedv): Tbits = self.c_lib.freedv_get_total_bits(freedv) Terrs = self.c_lib.freedv_get_total_bit_errors(freedv) if Tbits != 0: ber = (Terrs / Tbits) * 100 static.BER = int(ber) self.c_lib.freedv_set_total_bit_errors(freedv, 0) self.c_lib.freedv_set_total_bits(freedv, 0) def calculate_snr(self, freedv): modem_stats_snr = c_float() modem_stats_sync = c_int() self.c_lib.freedv_get_modem_stats(freedv, byref( modem_stats_sync), byref(modem_stats_snr)) modem_stats_snr = modem_stats_snr.value try: static.SNR = round(modem_stats_snr, 1) except: static.SNR = 0 def get_radio_stats(self): while True: time.sleep(0.1) static.HAMLIB_FREQUENCY = int(self.my_rig.get_freq()) (hamlib_mode, static.HAMLIB_BANDWITH) = self.my_rig.get_mode() static.HAMLIB_MODE = Hamlib.rig_strrmode(hamlib_mode) #static.HAMLIB_FREQUENCY = rigctld.get_frequency() #static.HAMLIB_MODE = rigctld.get_mode()[0] #static.HAMLIB_BANDWITH = rigctld.get_mode()[1] def calculate_fft(self): while True: time.sleep(0.01) # WE NEED TO OPTIMIZE THIS! if len(self.fft_data) >= 1024: data_in = self.fft_data self.fft_data = bytes() # https://gist.github.com/ZWMiller/53232427efc5088007cab6feee7c6e4c audio_data = np.fromstring(data_in, np.int16) # Fast Fourier Transform, 10*log10(abs) is to scale it to dB # and make sure it's not imaginary try: fftarray = np.fft.rfft(audio_data) # set value 0 to 1 to avoid division by zero fftarray[fftarray == 0] = 1 dfft = 10.*np.log10(abs(fftarray)) # round data to decrease size dfft = np.around(dfft, 1) dfftlist = dfft.tolist() # send fft only if receiving if static.CHANNEL_STATE == 'RECEIVING_SIGNALLING' or static.CHANNEL_STATE == 'RECEIVING_DATA': #static.FFT = dfftlist[20:100] static.FFT = dfftlist except: print("setting fft = 0") # else 0 static.FFT = [0] * 400 else: pass