FreeDATA/modem/modem.py

1575 lines
60 KiB
Python
Raw Normal View History

2020-12-23 16:48:54 +00:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 23 07:04:24 2020
@author: DJ2LS
"""
2022-12-26 11:49:01 +00:00
# pylint: disable=invalid-name, line-too-long, c-extension-no-member
# pylint: disable=import-outside-toplevel
import atexit
2020-12-23 16:48:54 +00:00
import ctypes
import os
2023-11-09 16:14:22 +00:00
import queue
import threading
import time
from collections import deque
import codec2
2022-12-26 11:49:01 +00:00
import itertools
import numpy as np
import sounddevice as sd
2023-11-13 17:11:55 +00:00
from global_instances import HamlibParam, ModemParam, Modem
from static import FRAME_TYPE
import structlog
2023-02-14 21:02:30 +00:00
import tci
2023-10-29 22:10:12 +00:00
import cw
2023-03-29 10:20:06 +00:00
from queues import DATA_QUEUE_RECEIVED, MODEM_RECEIVED_QUEUE, MODEM_TRANSMIT_QUEUE, RIGCTLD_COMMAND_QUEUE, \
2023-05-26 12:25:48 +00:00
AUDIO_RECEIVED_QUEUE, AUDIO_TRANSMIT_QUEUE, MESH_RECEIVED_QUEUE
import audio
import event_manager
2021-07-10 21:27:33 +00:00
TESTMODE = False
RXCHANNEL = ""
TXCHANNEL = ""
Modem.transmitting = False
2021-08-06 20:09:16 +00:00
# Receive only specific modes to reduce CPU load
2022-10-10 07:46:29 +00:00
RECEIVE_SIG0 = True
2022-10-10 07:00:45 +00:00
RECEIVE_SIG1 = False
RECEIVE_DATAC1 = False
RECEIVE_DATAC3 = False
RECEIVE_DATAC4 = False
2023-03-04 09:59:43 +00:00
# state buffer
SIG0_DATAC13_STATE = []
SIG1_DATAC13_STATE = []
DAT0_DATAC1_STATE = []
DAT0_DATAC3_STATE = []
DAT0_DATAC4_STATE = []
2023-03-04 09:59:43 +00:00
FSK_LDPC0_STATE = []
FSK_LDPC1_STATE = []
2023-03-29 10:20:06 +00:00
class RF:
"""Class to encapsulate interactions between the audio device and codec2"""
log = structlog.get_logger("RF")
def __init__(self, config, event_queue, fft_queue, service_queue, states) -> None:
2023-11-08 13:24:54 +00:00
self.config = config
2023-11-14 18:26:11 +00:00
print(config)
2023-11-09 21:11:53 +00:00
self.service_queue = service_queue
self.states = states
2023-11-08 13:24:54 +00:00
self.sampler_avg = 0
self.buffer_avg = 0
2022-05-09 00:41:49 +00:00
# these are crc ids now
self.audio_input_device = config['AUDIO']['input_device']
self.audio_output_device = config['AUDIO']['output_device']
2023-11-11 19:38:13 +00:00
self.rx_audio_level = config['AUDIO']['rx_audio_level']
self.tx_audio_level = config['AUDIO']['tx_audio_level']
self.enable_audio_auto_tune = config['AUDIO']['enable_auto_tune']
2023-11-12 22:28:10 +00:00
self.enable_fft = config['MODEM']['enable_fft']
2023-11-13 17:11:55 +00:00
self.enable_scatter = config['MODEM']['enable_scatter']
2023-11-12 22:28:10 +00:00
self.tx_delay = config['MODEM']['tx_delay']
self.tuning_range_fmin = config['MODEM']['tuning_range_fmin']
self.tuning_range_fmax = config['MODEM']['tuning_range_fmax']
2023-11-12 22:22:53 +00:00
self.tci_ip = config['TCI']['tci_ip']
self.tci_port = config['TCI']['tci_port']
2023-11-13 17:11:55 +00:00
self.buffer_overflow_counter = [0, 0, 0, 0, 0, 0, 0, 0]
2023-11-12 22:22:53 +00:00
self.channel_busy_delay = 0
self.AUDIO_SAMPLE_RATE_RX = 48000
self.AUDIO_SAMPLE_RATE_TX = 48000
self.MODEM_SAMPLE_RATE = codec2.api.FREEDV_FS_8000
self.AUDIO_FRAMES_PER_BUFFER_RX = 2400 * 2 # 8192
# 8192 Let's do some tests with very small chunks for TX
2023-05-20 07:53:57 +00:00
self.AUDIO_FRAMES_PER_BUFFER_TX = 1200 if HamlibParam.hamlib_radiocontrol in ["tci"] else 2400 * 2
# 8 * (self.AUDIO_SAMPLE_RATE_RX/self.MODEM_SAMPLE_RATE) == 48
self.AUDIO_CHANNELS = 1
self.MODE = 0
2022-05-09 00:41:49 +00:00
2023-10-31 13:00:03 +00:00
self.is_codec2_traffic_cooldown = 20
self.is_codec2_traffic_counter = 0
# Locking state for mod out so buffer will be filled before we can use it
# https://github.com/DJ2LS/FreeDATA/issues/127
# https://github.com/DJ2LS/FreeDATA/issues/99
self.mod_out_locked = True
2022-05-09 00:41:49 +00:00
# Make sure our resampler will work
assert (self.AUDIO_SAMPLE_RATE_RX / self.MODEM_SAMPLE_RATE) == codec2.api.FDMDV_OS_48 # type: ignore
2022-05-09 00:41:49 +00:00
self.modem_transmit_queue = MODEM_TRANSMIT_QUEUE
self.modem_received_queue = MODEM_RECEIVED_QUEUE
2023-02-21 10:57:14 +00:00
self.audio_received_queue = AUDIO_RECEIVED_QUEUE
self.audio_transmit_queue = AUDIO_TRANSMIT_QUEUE
# Init FIFO queue to store modulation out in
self.modoutqueue = deque()
2022-05-09 00:41:49 +00:00
2023-11-12 22:22:53 +00:00
self.event_manager = event_manager.EventManager([event_queue])
2023-11-09 16:14:22 +00:00
self.fft_queue = fft_queue
2023-11-11 09:41:16 +00:00
self.start_modem()
2023-11-08 13:24:54 +00:00
# --------------------------------------------------------------------------------------------------------
def tci_tx_callback(self) -> None:
"""
Callback for TCI TX
"""
while True:
threading.Event().wait(0.01)
2023-11-08 13:24:54 +00:00
if len(self.modoutqueue) > 0 and not self.mod_out_locked:
HamlibParam.ptt_state = self.radio.set_ptt(True)
self.event_manager.send_ptt_change(True)
2022-03-19 11:42:10 +00:00
2023-11-08 13:24:54 +00:00
data_out = self.modoutqueue.popleft()
self.tci_module.push_audio(data_out)
2023-11-11 09:41:16 +00:00
def start_modem(self):
if not TESTMODE and HamlibParam.hamlib_radiocontrol not in ["tci"]:
2023-11-11 09:53:01 +00:00
result = self.init_audio()
2023-11-11 09:41:16 +00:00
elif not TESTMODE:
2023-11-11 09:53:01 +00:00
result = self.init_tci()
2023-11-11 09:41:16 +00:00
else:
2023-11-11 09:53:01 +00:00
result = self.init_mkfifo()
if result not in [False]:
# init codec2 instances
self.init_codec2()
2023-11-11 09:41:16 +00:00
2023-11-11 09:53:01 +00:00
# init rig control
self.init_rig_control()
2023-11-11 09:41:16 +00:00
2023-11-11 09:53:01 +00:00
# init decoders
self.init_decoders()
2023-11-11 09:41:16 +00:00
2023-11-11 09:53:01 +00:00
# init decoding threads
self.init_data_threads()
atexit.register(self.stream.stop)
else:
return False
2023-11-11 09:41:16 +00:00
def stop_modem(self):
try:
# let's stop the modem service
self.service_queue.put("stop")
# simulate audio class active state for reducing cli output
# self.stream = lambda: None
# self.stream.active = False
# self.stream.stop
except Exception:
self.log.error("[MDM] Error stopping modem")
2023-11-11 09:41:16 +00:00
2023-11-08 13:24:54 +00:00
def init_audio(self):
2023-11-11 09:53:01 +00:00
self.log.info(f"[MDM] init: get audio devices", input_device=self.audio_input_device,
output_device=self.audio_output_device)
2023-11-11 09:41:16 +00:00
try:
2023-11-11 09:53:01 +00:00
result = audio.get_device_index_from_crc(self.audio_input_device, True)
if result is None:
raise ValueError("Invalid input device")
else:
in_dev_index, in_dev_name = result
result = audio.get_device_index_from_crc(self.audio_output_device, False)
if result is None:
raise ValueError("Invalid output device")
else:
out_dev_index, out_dev_name = result
self.log.info(f"[MDM] init: receiving audio from '{in_dev_name}'")
self.log.info(f"[MDM] init: transmiting audio on '{out_dev_name}'")
self.log.debug("[MDM] init: starting pyaudio callback and decoding threads")
# init codec2 resampler
self.resampler = codec2.resampler()
# init audio stream
self.stream = sd.RawStream(
channels=1,
dtype="int16",
callback=self.callback,
device=(in_dev_index, out_dev_index),
samplerate=self.AUDIO_SAMPLE_RATE_RX,
blocksize=4800,
)
self.stream.start()
return True
except Exception as audioerr:
self.log.error("[MDM] init: starting pyaudio callback failed", e=audioerr)
2023-11-11 09:41:16 +00:00
self.stop_modem()
2023-11-11 09:53:01 +00:00
return False
2023-11-11 09:41:16 +00:00
def init_tci(self):
# placeholder area for processing audio via TCI
# https://github.com/maksimus1210/TCI
2023-11-12 22:22:53 +00:00
self.log.warning("[MDM] [TCI] Not yet fully implemented", ip=self.tci_ip, port=self.tci_port)
2023-11-11 09:41:16 +00:00
# we are trying this by simulating an audio stream Object like with mkfifo
class Object:
"""An object for simulating audio stream"""
active = True
self.stream = Object()
# lets init TCI module
self.tci_module = tci.TCICtrl()
tci_rx_callback_thread = threading.Thread(
target=self.tci_rx_callback,
name="TCI RX CALLBACK THREAD",
daemon=True,
)
tci_rx_callback_thread.start()
# let's start the audio tx callback
self.log.debug("[MDM] Starting tci tx callback thread")
tci_tx_callback_thread = threading.Thread(
target=self.tci_tx_callback,
name="TCI TX CALLBACK THREAD",
daemon=True,
)
tci_tx_callback_thread.start()
def init_mkfifo(self):
class Object:
"""An object for simulating audio stream"""
active = True
self.stream = Object()
# Create mkfifo buffers
try:
os.mkfifo(RXCHANNEL)
os.mkfifo(TXCHANNEL)
except Exception as err:
self.log.info(f"[MDM] init:mkfifo: Exception: {err}")
mkfifo_write_callback_thread = threading.Thread(
target=self.mkfifo_write_callback,
name="MKFIFO WRITE CALLBACK THREAD",
daemon=True,
)
mkfifo_write_callback_thread.start()
self.log.debug("[MDM] Starting mkfifo_read_callback")
mkfifo_read_callback_thread = threading.Thread(
target=self.mkfifo_read_callback,
name="MKFIFO READ CALLBACK THREAD",
daemon=True,
)
mkfifo_read_callback_thread.start()
2022-02-19 19:45:57 +00:00
2023-02-14 20:28:53 +00:00
def tci_rx_callback(self) -> None:
"""
Callback for TCI RX
data_in48k must be filled with 48000Hz audio raw data
"""
while True:
2023-02-21 10:57:14 +00:00
x = self.audio_received_queue.get()
x = np.frombuffer(x, dtype=np.int16)
2023-03-29 10:20:06 +00:00
# x = self.resampler.resample48_to_8(x)
if self.enable_fft:
2023-11-09 16:14:22 +00:00
self.calculate_fft(x)
2023-02-14 20:28:53 +00:00
length_x = len(x)
for data_buffer, receive in [
(self.sig0_datac13_buffer, RECEIVE_SIG0),
(self.sig1_datac13_buffer, RECEIVE_SIG1),
2023-02-14 20:28:53 +00:00
(self.dat0_datac1_buffer, RECEIVE_DATAC1),
(self.dat0_datac3_buffer, RECEIVE_DATAC3),
(self.dat0_datac4_buffer, RECEIVE_DATAC4),
(self.fsk_ldpc_buffer_0, Modem.enable_fsk),
(self.fsk_ldpc_buffer_1, Modem.enable_fsk),
2023-02-14 20:28:53 +00:00
]:
if (
not (data_buffer.nbuffer + length_x) > data_buffer.size
and receive
):
data_buffer.push(x)
def mkfifo_read_callback(self) -> None:
"""
Support testing by reading the audio data from a pipe and
depositing the data into the codec data buffers.
"""
while True:
threading.Event().wait(0.01)
2022-05-09 00:41:49 +00:00
# -----read
data_in48k = bytes()
with open(RXCHANNEL, "rb") as fifo:
2022-05-09 00:41:49 +00:00
for line in fifo:
data_in48k += line
while len(data_in48k) >= 48:
x = np.frombuffer(data_in48k[:48], dtype=np.int16)
x = self.resampler.resample48_to_8(x)
data_in48k = data_in48k[48:]
length_x = len(x)
2022-05-22 18:20:03 +00:00
for data_buffer, receive in [
(self.sig0_datac13_buffer, RECEIVE_SIG0),
(self.sig1_datac13_buffer, RECEIVE_SIG1),
2022-10-10 07:00:45 +00:00
(self.dat0_datac1_buffer, RECEIVE_DATAC1),
(self.dat0_datac3_buffer, RECEIVE_DATAC3),
(self.dat0_datac4_buffer, RECEIVE_DATAC4),
(self.fsk_ldpc_buffer_0, Modem.enable_fsk),
(self.fsk_ldpc_buffer_1, Modem.enable_fsk),
2022-05-22 18:20:03 +00:00
]:
if (
2023-01-31 16:44:46 +00:00
not (data_buffer.nbuffer + length_x) > data_buffer.size
and receive
2022-05-22 18:20:03 +00:00
):
data_buffer.push(x)
2022-05-09 00:41:49 +00:00
def mkfifo_write_callback(self) -> None:
"""Support testing by writing the audio data to a pipe."""
while True:
threading.Event().wait(0.01)
2022-05-09 00:41:49 +00:00
# -----write
2022-12-16 16:09:48 +00:00
if len(self.modoutqueue) > 0 and not self.mod_out_locked:
2022-05-09 00:41:49 +00:00
data_out48k = self.modoutqueue.popleft()
# print(len(data_out48k))
2022-05-09 00:41:49 +00:00
with open(TXCHANNEL, "wb") as fifo_write:
fifo_write.write(data_out48k)
fifo_write.flush()
fifo_write.flush()
2022-05-09 00:41:49 +00:00
# Callback for the audio streaming devices
def callback(self, data_in48k, outdata, frames, time, status) -> None:
"""
Receive data into appropriate queue.
Args:
data_in48k: Incoming data received
outdata: Container for the data returned
frames: Number of frames
time:
2022-05-09 00:41:49 +00:00
status:
2022-05-09 00:41:49 +00:00
"""
# self.log.debug("[MDM] callback")
2023-11-12 22:22:53 +00:00
try:
x = np.frombuffer(data_in48k, dtype=np.int16)
x = self.resampler.resample48_to_8(x)
x = set_audio_volume(x, self.rx_audio_level)
2022-12-25 14:20:46 +00:00
2023-11-12 22:22:53 +00:00
# audio recording for debugging purposes
2023-11-13 17:11:55 +00:00
# TODO Find a nice place for this
#if AudioParam.audio_record:
# AudioParam.audio_record_file.writeframes(x)
2023-11-12 22:22:53 +00:00
# Avoid decoding when transmitting to reduce CPU
# TODO Overriding this for testing purposes
# if not Modem.transmitting:
length_x = len(x)
# Avoid buffer overflow by filling only if buffer for
# selected datachannel mode is not full
for audiobuffer, receive, index in [
(self.sig0_datac13_buffer, RECEIVE_SIG0, 0),
(self.sig1_datac13_buffer, RECEIVE_SIG1, 1),
(self.dat0_datac1_buffer, RECEIVE_DATAC1, 2),
(self.dat0_datac3_buffer, RECEIVE_DATAC3, 3),
(self.dat0_datac4_buffer, RECEIVE_DATAC4, 4),
(self.fsk_ldpc_buffer_0, Modem.enable_fsk, 5),
(self.fsk_ldpc_buffer_1, Modem.enable_fsk, 6),
]:
if (audiobuffer.nbuffer + length_x) > audiobuffer.size:
2023-11-13 17:11:55 +00:00
self.buffer_overflow_counter[index] += 1
self.event_manager.send_buffer_overflow(self.buffer_overflow_counter)
2023-11-12 22:22:53 +00:00
elif receive:
audiobuffer.push(x)
# end of "not Modem.transmitting" if block
if not self.modoutqueue or self.mod_out_locked:
data_out48k = np.zeros(frames, dtype=np.int16)
if self.enable_fft:
self.calculate_fft(x)
else:
if not HamlibParam.ptt_state:
# TODO Moved to this place for testing
# Maybe we can avoid moments of silence before transmitting
HamlibParam.ptt_state = self.radio.set_ptt(True)
self.event_manager.send_ptt_change(True)
data_out48k = self.modoutqueue.popleft()
if self.enable_fft:
self.calculate_fft(data_out48k)
except Exception as e:
self.log.warning(f"[MDM] audio callback not ready yet: {e}")
2022-05-09 00:41:49 +00:00
try:
2022-05-09 00:41:49 +00:00
outdata[:] = data_out48k[:frames]
except IndexError as err:
2023-11-12 22:22:53 +00:00
self.log.debug(f"[MDM] callback writing error: IndexError: {err}")
# return (data_out48k, audio.pyaudio.paContinue)
2021-03-12 13:14:36 +00:00
# --------------------------------------------------------------------
def transmit(
2023-01-31 16:44:46 +00:00
self, mode, repeats: int, repeat_delay: int, frames: bytearray
) -> bool:
"""
Args:
2022-05-09 00:41:49 +00:00
mode:
repeats:
repeat_delay:
frames:
"""
self.reset_data_sync()
if mode == codec2.FREEDV_MODE.datac0.value:
freedv = self.freedv_datac0_tx
elif mode == codec2.FREEDV_MODE.datac1.value:
freedv = self.freedv_datac1_tx
elif mode == codec2.FREEDV_MODE.datac3.value:
freedv = self.freedv_datac3_tx
elif mode == codec2.FREEDV_MODE.datac4.value:
freedv = self.freedv_datac4_tx
elif mode == codec2.FREEDV_MODE.datac13.value:
freedv = self.freedv_datac13_tx
elif mode == codec2.FREEDV_MODE.fsk_ldpc_0.value:
2023-03-04 09:59:43 +00:00
freedv = self.freedv_ldpc0_tx
elif mode == codec2.FREEDV_MODE.fsk_ldpc_1.value:
2023-03-04 10:16:15 +00:00
freedv = self.freedv_ldpc1_tx
else:
return False
Modem.transmitting = True
2023-01-29 11:26:54 +00:00
# if we're transmitting FreeDATA signals, reset channel busy state
2023-11-11 19:52:29 +00:00
self.states.set("channel_busy", False)
2023-01-29 11:26:54 +00:00
start_of_transmission = time.time()
2023-10-22 08:04:10 +00:00
# TODO Moved ptt toggle some steps before audio is ready for testing
# Toggle ptt early to save some time and send ptt state via socket
2023-04-27 19:43:56 +00:00
# HamlibParam.ptt_state = self.radio.set_ptt(True)
2022-12-25 13:28:21 +00:00
# jsondata = {"ptt": "True"}
# data_out = json.dumps(jsondata)
# sock.SOCKET_QUEUE.put(data_out)
2022-05-09 00:41:49 +00:00
# Open codec2 instance
self.MODE = mode
# Get number of bytes per frame for mode
bytes_per_frame = int(codec2.api.freedv_get_bits_per_modem_frame(freedv) / 8)
payload_bytes_per_frame = bytes_per_frame - 2
# Init buffer for data
n_tx_modem_samples = codec2.api.freedv_get_n_tx_modem_samples(freedv)
mod_out = ctypes.create_string_buffer(n_tx_modem_samples * 2)
# Init buffer for preample
n_tx_preamble_modem_samples = codec2.api.freedv_get_n_tx_preamble_modem_samples(
freedv
)
mod_out_preamble = ctypes.create_string_buffer(n_tx_preamble_modem_samples * 2)
# Init buffer for postamble
n_tx_postamble_modem_samples = (
codec2.api.freedv_get_n_tx_postamble_modem_samples(freedv)
)
mod_out_postamble = ctypes.create_string_buffer(
n_tx_postamble_modem_samples * 2
)
# Add empty data to handle ptt toggle time
if self.tx_delay > 0:
data_delay = int(self.MODEM_SAMPLE_RATE * (self.tx_delay / 1000)) # type: ignore
2023-03-06 11:48:27 +00:00
mod_out_silence = ctypes.create_string_buffer(data_delay * 2)
txbuffer = bytes(mod_out_silence)
else:
txbuffer = bytes()
self.log.debug(
"[MDM] TRANSMIT", mode=self.MODE, payload=payload_bytes_per_frame, delay=self.tx_delay
)
2022-05-09 00:41:49 +00:00
for _ in range(repeats):
# Create modulation for all frames in the list
for frame in frames:
# Write preamble to txbuffer
# codec2 fsk preamble may be broken -
# at least it sounds like that, so we are disabling it for testing
if self.MODE not in [
codec2.FREEDV_MODE.fsk_ldpc_0.value,
codec2.FREEDV_MODE.fsk_ldpc_1.value,
]:
# Write preamble to txbuffer
codec2.api.freedv_rawdatapreambletx(freedv, mod_out_preamble)
txbuffer += bytes(mod_out_preamble)
# Create buffer for data
# Use this if CRC16 checksum is required (DATAc1-3)
buffer = bytearray(payload_bytes_per_frame)
# Set buffersize to length of data which will be send
buffer[: len(frame)] = frame # type: ignore
# Create crc for data frame -
# Use the crc function shipped with codec2
# to avoid CRC algorithm incompatibilities
# Generate CRC16
crc = ctypes.c_ushort(
codec2.api.freedv_gen_crc16(bytes(buffer), payload_bytes_per_frame)
)
# Convert crc to 2-byte (16-bit) hex string
crc = crc.value.to_bytes(2, byteorder="big")
# Append CRC to data buffer
buffer += crc
2022-05-09 00:41:49 +00:00
data = (ctypes.c_ubyte * bytes_per_frame).from_buffer_copy(buffer)
# modulate DATA and save it into mod_out pointer
codec2.api.freedv_rawdatatx(freedv, mod_out, data)
txbuffer += bytes(mod_out)
2022-05-09 00:41:49 +00:00
# codec2 fsk postamble may be broken -
# at least it sounds like that, so we are disabling it for testing
if self.MODE not in [
codec2.FREEDV_MODE.fsk_ldpc_0.value,
codec2.FREEDV_MODE.fsk_ldpc_1.value,
]:
# Write postamble to txbuffer
codec2.api.freedv_rawdatapostambletx(freedv, mod_out_postamble)
# Append postamble to txbuffer
txbuffer += bytes(mod_out_postamble)
# Add delay to end of frames
samples_delay = int(self.MODEM_SAMPLE_RATE * (repeat_delay / 1000)) # type: ignore
mod_out_silence = ctypes.create_string_buffer(samples_delay * 2)
2021-12-25 16:05:38 +00:00
txbuffer += bytes(mod_out_silence)
2022-05-09 00:41:49 +00:00
# Re-sample back up to 48k (resampler works on np.int16)
x = np.frombuffer(txbuffer, dtype=np.int16)
2023-03-04 09:59:43 +00:00
self.audio_auto_tune()
x = set_audio_volume(x, self.tx_audio_level)
2023-05-20 07:53:57 +00:00
if not HamlibParam.hamlib_radiocontrol in ["tci"]:
2023-03-29 10:20:06 +00:00
txbuffer_out = self.resampler.resample8_to_48(x)
else:
txbuffer_out = x
# Explicitly lock our usage of mod_out_queue if needed
# This could avoid audio problems on slower CPU
# we will fill our modout list with all data, then start
# processing it in audio callback
self.mod_out_locked = True
2022-05-09 00:41:49 +00:00
# -------------------------------
2023-05-17 13:23:49 +00:00
# add modulation to modout_queue
self.enqueue_modulation(txbuffer_out)
2022-03-31 19:13:30 +00:00
# Release our mod_out_lock, so we can use the queue
self.mod_out_locked = False
# we need to wait manually for tci processing
2023-05-20 07:53:57 +00:00
if HamlibParam.hamlib_radiocontrol in ["tci"]:
duration = len(txbuffer_out) / 8000
timestamp_to_sleep = time.time() + duration
self.log.debug("[MDM] TCI calculated duration", duration=duration)
2023-04-01 17:40:57 +00:00
tci_timeout_reached = False
#while time.time() < timestamp_to_sleep:
# threading.Event().wait(0.01)
else:
timestamp_to_sleep = time.time()
2023-04-01 17:40:57 +00:00
# set tci timeout reached to True for overriding if not used
tci_timeout_reached = True
2023-04-01 17:40:57 +00:00
while self.modoutqueue or not tci_timeout_reached:
2023-05-20 07:53:57 +00:00
if HamlibParam.hamlib_radiocontrol in ["tci"]:
2023-03-30 06:00:23 +00:00
if time.time() < timestamp_to_sleep:
tci_timeout_reached = False
else:
tci_timeout_reached = True
2023-03-29 10:20:06 +00:00
threading.Event().wait(0.01)
# if we're transmitting FreeDATA signals, reset channel busy state
2023-11-11 19:52:29 +00:00
self.states.set("channel_busy", False)
2023-04-27 19:43:56 +00:00
HamlibParam.ptt_state = self.radio.set_ptt(False)
2022-05-09 00:41:49 +00:00
# Push ptt state to socket stream
self.event_manager.send_ptt_change(False)
2022-05-09 00:41:49 +00:00
# After processing, set the locking state back to true to be prepared for next transmission
self.mod_out_locked = True
2022-05-09 00:41:49 +00:00
2022-01-07 11:55:03 +00:00
self.modem_transmit_queue.task_done()
Modem.transmitting = False
end_of_transmission = time.time()
transmission_time = end_of_transmission - start_of_transmission
self.log.debug("[MDM] ON AIR TIME", time=transmission_time)
def audio_auto_tune(self):
# enable / disable AUDIO TUNE Feature / ALC correction
if self.enable_audio_auto_tune:
if HamlibParam.alc == 0.0:
self.tx_audio_level = self.tx_audio_level + 20
elif 0.0 < HamlibParam.alc <= 0.1:
print("0.0 < HamlibParam.alc <= 0.1")
self.tx_audio_level = self.tx_audio_level + 2
self.log.debug("[MDM] AUDIO TUNE", audio_level=str(self.tx_audio_level),
alc_level=str(HamlibParam.alc))
elif 0.1 < HamlibParam.alc < 0.2:
print("0.1 < HamlibParam.alc < 0.2")
self.tx_audio_level = self.tx_audio_level
self.log.debug("[MDM] AUDIO TUNE", audio_level=str(self.tx_audio_level),
alc_level=str(HamlibParam.alc))
elif 0.2 < HamlibParam.alc < 0.99:
print("0.2 < HamlibParam.alc < 0.99")
self.tx_audio_level = self.tx_audio_level - 20
self.log.debug("[MDM] AUDIO TUNE", audio_level=str(self.tx_audio_level),
alc_level=str(HamlibParam.alc))
elif 1.0 >= HamlibParam.alc:
print("1.0 >= HamlibParam.alc")
self.tx_audio_level = self.tx_audio_level - 40
self.log.debug("[MDM] AUDIO TUNE", audio_level=str(self.tx_audio_level),
alc_level=str(HamlibParam.alc))
else:
self.log.debug("[MDM] AUDIO TUNE", audio_level=str(self.tx_audio_level),
alc_level=str(HamlibParam.alc))
2023-05-17 13:23:49 +00:00
def transmit_morse(self, repeats, repeat_delay, frames):
Modem.transmitting = True
2023-05-17 13:23:49 +00:00
# if we're transmitting FreeDATA signals, reset channel busy state
2023-11-11 19:52:29 +00:00
self.states.set("channel_busy", False)
2023-05-17 13:23:49 +00:00
self.log.debug(
"[MDM] TRANSMIT", mode="MORSE"
)
start_of_transmission = time.time()
2023-10-29 22:10:12 +00:00
txbuffer_out = cw.MorseCodePlayer().text_to_signal("DJ2LS-1")
2023-05-17 13:23:49 +00:00
self.mod_out_locked = True
self.enqueue_modulation(txbuffer_out)
self.mod_out_locked = False
# we need to wait manually for tci processing
2023-05-20 07:53:57 +00:00
if HamlibParam.hamlib_radiocontrol in ["tci"]:
2023-05-17 13:23:49 +00:00
duration = len(txbuffer_out) / 8000
timestamp_to_sleep = time.time() + duration
self.log.debug("[MDM] TCI calculated duration", duration=duration)
tci_timeout_reached = False
#while time.time() < timestamp_to_sleep:
# threading.Event().wait(0.01)
else:
timestamp_to_sleep = time.time()
# set tci timeout reached to True for overriding if not used
tci_timeout_reached = True
while self.modoutqueue or not tci_timeout_reached:
2023-05-20 07:53:57 +00:00
if HamlibParam.hamlib_radiocontrol in ["tci"]:
2023-05-17 13:23:49 +00:00
if time.time() < timestamp_to_sleep:
tci_timeout_reached = False
else:
tci_timeout_reached = True
threading.Event().wait(0.01)
# if we're transmitting FreeDATA signals, reset channel busy state
2023-11-11 19:52:29 +00:00
self.states.set("channel_busy", False)
2023-05-17 13:23:49 +00:00
HamlibParam.ptt_state = self.radio.set_ptt(False)
# Push ptt state to socket stream
self.event_manager.send_ptt_change(False)
2023-05-17 13:23:49 +00:00
# After processing, set the locking state back to true to be prepared for next transmission
self.mod_out_locked = True
self.modem_transmit_queue.task_done()
Modem.transmitting = False
2023-05-17 13:23:49 +00:00
threading.Event().set()
end_of_transmission = time.time()
transmission_time = end_of_transmission - start_of_transmission
self.log.debug("[MDM] ON AIR TIME", time=transmission_time)
def enqueue_modulation(self, txbuffer_out):
2023-10-29 22:10:12 +00:00
2023-05-17 13:23:49 +00:00
chunk_length = self.AUDIO_FRAMES_PER_BUFFER_TX # 4800
chunk = [
txbuffer_out[i: i + chunk_length]
for i in range(0, len(txbuffer_out), chunk_length)
]
for c in chunk:
# Pad the chunk, if needed
if len(c) < chunk_length:
delta = chunk_length - len(c)
delta_zeros = np.zeros(delta, dtype=np.int16)
c = np.append(c, delta_zeros)
# self.log.debug("[MDM] mod out shorter than audio buffer", delta=delta)
self.modoutqueue.append(c)
2023-11-08 13:24:54 +00:00
def init_decoders(self):
if Modem.enable_fsk:
audio_thread_fsk_ldpc0 = threading.Thread(
target=self.audio_fsk_ldpc_0, name="AUDIO_THREAD FSK LDPC0", daemon=True
)
audio_thread_fsk_ldpc0.start()
audio_thread_fsk_ldpc1 = threading.Thread(
target=self.audio_fsk_ldpc_1, name="AUDIO_THREAD FSK LDPC1", daemon=True
)
audio_thread_fsk_ldpc1.start()
else:
audio_thread_sig0_datac13 = threading.Thread(
target=self.audio_sig0_datac13, name="AUDIO_THREAD DATAC13 - 0", daemon=True
)
audio_thread_sig0_datac13.start()
audio_thread_sig1_datac13 = threading.Thread(
target=self.audio_sig1_datac13, name="AUDIO_THREAD DATAC13 - 1", daemon=True
)
audio_thread_sig1_datac13.start()
audio_thread_dat0_datac1 = threading.Thread(
target=self.audio_dat0_datac1, name="AUDIO_THREAD DATAC1", daemon=True
)
audio_thread_dat0_datac1.start()
audio_thread_dat0_datac3 = threading.Thread(
target=self.audio_dat0_datac3, name="AUDIO_THREAD DATAC3", daemon=True
)
audio_thread_dat0_datac3.start()
audio_thread_dat0_datac4 = threading.Thread(
target=self.audio_dat0_datac4, name="AUDIO_THREAD DATAC4", daemon=True
)
audio_thread_dat0_datac4.start()
def demodulate_audio(
2023-01-31 16:44:46 +00:00
self,
audiobuffer: codec2.audio_buffer,
nin: int,
freedv: ctypes.c_void_p,
bytes_out,
bytes_per_frame,
state_buffer,
mode_name,
) -> int:
"""
De-modulate supplied audio stream with supplied codec2 instance.
Decoded audio is placed into `bytes_out`.
:param audiobuffer: Incoming audio
:type audiobuffer: codec2.audio_buffer
:param nin: Number of frames codec2 is expecting
:type nin: int
:param freedv: codec2 instance
:type freedv: ctypes.c_void_p
:param bytes_out: Demodulated audio
:type bytes_out: _type_
:param bytes_per_frame: Number of bytes per frame
:type bytes_per_frame: int
:param state_buffer: modem states
:type state_buffer: int
:param mode_name: mode name
:type mode_name: str
:return: NIN from freedv instance
:rtype: int
"""
2023-10-31 13:00:03 +00:00
nbytes = 0
try:
while self.stream.active:
threading.Event().wait(0.01)
while audiobuffer.nbuffer >= nin:
# demodulate audio
nbytes = codec2.api.freedv_rawdatarx(
freedv, bytes_out, audiobuffer.buffer.ctypes
)
# get current modem states and write to list
# 1 trial
# 2 sync
# 3 trial sync
# 6 decoded
# 10 error decoding == NACK
rx_status = codec2.api.freedv_get_rx_status(freedv)
2023-10-31 13:00:03 +00:00
if rx_status not in [0]:
# we need to disable this if in testmode as its causing problems with FIFO it seems
if not TESTMODE:
2023-11-11 19:52:29 +00:00
self.states.set("is_codec2_traffic", True)
2023-10-31 13:00:03 +00:00
self.is_codec2_traffic_counter = self.is_codec2_traffic_cooldown
if not self.states.channel_busy:
self.log.debug("[MDM] Setting channel_busy since codec2 data detected")
2023-11-11 19:52:29 +00:00
self.states.set("channel_busy", True)
self.channel_busy_delay += 10
self.log.debug(
2023-01-31 16:44:46 +00:00
"[MDM] [demod_audio] modem state", mode=mode_name, rx_status=rx_status,
sync_flag=codec2.api.rx_sync_flags_to_text[rx_status]
)
else:
2023-11-11 19:52:29 +00:00
self.states.set("is_codec2_traffic", False)
2023-10-31 13:00:03 +00:00
# decrement codec traffic counter for making state smoother
if self.is_codec2_traffic_counter > 0:
self.is_codec2_traffic_counter -= 1
2023-11-11 19:52:29 +00:00
self.states.set("is_codec2_traffic", True)
2023-10-31 13:00:03 +00:00
else:
2023-11-11 19:52:29 +00:00
self.states.set("is_codec2_traffic", False)
2023-10-31 13:00:03 +00:00
if rx_status == 10:
state_buffer.append(rx_status)
audiobuffer.pop(nin)
nin = codec2.api.freedv_nin(freedv)
if nbytes == bytes_per_frame:
2023-05-26 12:25:48 +00:00
print(bytes(bytes_out))
# process commands only if Modem.listen = True
if Modem.listen:
# ignore data channel opener frames for avoiding toggle states
# use case: opener already received, but ack got lost and we are receiving
# an opener again
if mode_name in ["sig1-datac13"] and int.from_bytes(bytes(bytes_out[:1]), "big") in [
FRAME_TYPE.ARQ_SESSION_OPEN.value,
FRAME_TYPE.ARQ_DC_OPEN_W.value,
FRAME_TYPE.ARQ_DC_OPEN_ACK_W.value,
FRAME_TYPE.ARQ_DC_OPEN_N.value,
FRAME_TYPE.ARQ_DC_OPEN_ACK_N.value
]:
print("dropp")
2023-05-26 12:25:48 +00:00
elif int.from_bytes(bytes(bytes_out[:1]), "big") in [
2023-06-13 12:03:36 +00:00
FRAME_TYPE.MESH_BROADCAST.value,
FRAME_TYPE.MESH_SIGNALLING_PING.value,
FRAME_TYPE.MESH_SIGNALLING_PING_ACK.value,
2023-05-26 12:25:48 +00:00
]:
self.log.debug(
"[MDM] [demod_audio] moving data to mesh dispatcher", nbytes=nbytes
)
MESH_RECEIVED_QUEUE.put(bytes(bytes_out))
else:
self.log.debug(
"[MDM] [demod_audio] Pushing received data to received_queue", nbytes=nbytes
)
2023-11-13 17:11:55 +00:00
snr = self.calculate_snr(freedv)
self.modem_received_queue.put([bytes_out, freedv, bytes_per_frame, snr])
self.get_scatter(freedv)
state_buffer = []
2022-12-01 09:05:24 +00:00
else:
self.log.warning(
"[MDM] [demod_audio] received frame but ignored processing",
listen=Modem.listen
2022-12-01 09:05:24 +00:00
)
except Exception as e:
self.log.warning("[MDM] [demod_audio] Stream not active anymore", e=e)
2023-11-09 12:52:27 +00:00
return nin
2023-11-08 13:24:54 +00:00
def init_codec2(self):
# Open codec2 instances
# DATAC13
# SIGNALLING MODE 0 - Used for Connecting - Payload 14 Bytes
self.sig0_datac13_freedv, \
self.sig0_datac13_bytes_per_frame, \
self.sig0_datac13_bytes_out, \
self.sig0_datac13_buffer, \
self.sig0_datac13_nin = \
self.init_codec2_mode(codec2.FREEDV_MODE.datac13.value, None)
# DATAC13
# SIGNALLING MODE 1 - Used for ACK/NACK - Payload 5 Bytes
self.sig1_datac13_freedv, \
self.sig1_datac13_bytes_per_frame, \
self.sig1_datac13_bytes_out, \
self.sig1_datac13_buffer, \
self.sig1_datac13_nin = \
self.init_codec2_mode(codec2.FREEDV_MODE.datac13.value, None)
# DATAC1
self.dat0_datac1_freedv, \
self.dat0_datac1_bytes_per_frame, \
self.dat0_datac1_bytes_out, \
self.dat0_datac1_buffer, \
self.dat0_datac1_nin = \
self.init_codec2_mode(codec2.FREEDV_MODE.datac1.value, None)
# DATAC3
self.dat0_datac3_freedv, \
self.dat0_datac3_bytes_per_frame, \
self.dat0_datac3_bytes_out, \
self.dat0_datac3_buffer, \
self.dat0_datac3_nin = \
self.init_codec2_mode(codec2.FREEDV_MODE.datac3.value, None)
# DATAC4
self.dat0_datac4_freedv, \
self.dat0_datac4_bytes_per_frame, \
self.dat0_datac4_bytes_out, \
self.dat0_datac4_buffer, \
self.dat0_datac4_nin = \
self.init_codec2_mode(codec2.FREEDV_MODE.datac4.value, None)
# FSK LDPC - 0
self.fsk_ldpc_freedv_0, \
self.fsk_ldpc_bytes_per_frame_0, \
self.fsk_ldpc_bytes_out_0, \
self.fsk_ldpc_buffer_0, \
self.fsk_ldpc_nin_0 = \
self.init_codec2_mode(
codec2.FREEDV_MODE.fsk_ldpc.value,
codec2.api.FREEDV_MODE_FSK_LDPC_0_ADV
)
# FSK LDPC - 1
self.fsk_ldpc_freedv_1, \
self.fsk_ldpc_bytes_per_frame_1, \
self.fsk_ldpc_bytes_out_1, \
self.fsk_ldpc_buffer_1, \
self.fsk_ldpc_nin_1 = \
self.init_codec2_mode(
codec2.FREEDV_MODE.fsk_ldpc.value,
codec2.api.FREEDV_MODE_FSK_LDPC_1_ADV
)
# INIT TX MODES - here we need all modes.
self.freedv_datac0_tx = open_codec2_instance(codec2.FREEDV_MODE.datac0.value)
self.freedv_datac1_tx = open_codec2_instance(codec2.FREEDV_MODE.datac1.value)
self.freedv_datac3_tx = open_codec2_instance(codec2.FREEDV_MODE.datac3.value)
self.freedv_datac4_tx = open_codec2_instance(codec2.FREEDV_MODE.datac4.value)
self.freedv_datac13_tx = open_codec2_instance(codec2.FREEDV_MODE.datac13.value)
self.freedv_ldpc0_tx = open_codec2_instance(codec2.FREEDV_MODE.fsk_ldpc_0.value)
self.freedv_ldpc1_tx = open_codec2_instance(codec2.FREEDV_MODE.fsk_ldpc_1.value)
2022-10-05 20:42:48 +00:00
def init_codec2_mode(self, mode, adv):
"""
Init codec2 and return some important parameters
Args:
self:
mode:
adv:
Returns:
c2instance, bytes_per_frame, bytes_out, audio_buffer, nin
"""
if adv:
# FSK Long-distance Parity Code 1 - data frames
c2instance = ctypes.cast(
codec2.api.freedv_open_advanced(
2023-04-21 13:10:40 +00:00
codec2.FREEDV_MODE.fsk_ldpc.value,
2022-10-05 20:42:48 +00:00
ctypes.byref(adv),
),
ctypes.c_void_p,
)
else:
# create codec2 instance
c2instance = ctypes.cast(
codec2.api.freedv_open(mode), ctypes.c_void_p
)
# set tuning range
codec2.api.freedv_set_tuning_range(
2022-10-05 20:42:48 +00:00
c2instance,
2023-11-13 13:19:48 +00:00
ctypes.c_float(float(self.tuning_range_fmin)),
ctypes.c_float(float(self.tuning_range_fmax)),
2022-10-05 20:42:48 +00:00
)
# get bytes per frame
bytes_per_frame = int(
codec2.api.freedv_get_bits_per_modem_frame(c2instance) / 8
)
# create byte out buffer
bytes_out = ctypes.create_string_buffer(bytes_per_frame)
# set initial frames per burst
codec2.api.freedv_set_frames_per_burst(c2instance, 1)
# init audio buffer
audio_buffer = codec2.audio_buffer(2 * self.AUDIO_FRAMES_PER_BUFFER_RX)
# get initial nin
nin = codec2.api.freedv_nin(c2instance)
# Additional Datac0-specific information - these are not referenced anywhere else.
2022-10-10 07:00:45 +00:00
# self.sig0_datac0_payload_per_frame = self.sig0_datac0_bytes_per_frame - 2
# self.sig0_datac0_n_nom_modem_samples = codec2.api.freedv_get_n_nom_modem_samples(
2022-10-10 07:00:45 +00:00
# self.sig0_datac0_freedv
2022-10-05 20:42:48 +00:00
# )
# self.sig0_datac0_n_tx_modem_samples = codec2.api.freedv_get_n_tx_modem_samples(
2022-10-10 07:00:45 +00:00
# self.sig0_datac0_freedv
2022-10-05 20:42:48 +00:00
# )
2022-10-10 07:00:45 +00:00
# self.sig0_datac0_n_tx_preamble_modem_samples = (
# codec2.api.freedv_get_n_tx_preamble_modem_samples(self.sig0_datac0_freedv)
2022-10-05 20:42:48 +00:00
# )
2022-10-10 07:00:45 +00:00
# self.sig0_datac0_n_tx_postamble_modem_samples = (
# codec2.api.freedv_get_n_tx_postamble_modem_samples(self.sig0_datac0_freedv)
2022-10-05 20:42:48 +00:00
# )
# return values
return c2instance, bytes_per_frame, bytes_out, audio_buffer, nin
def audio_sig0_datac13(self) -> None:
"""Receive data encoded with datac13 - 0"""
self.sig0_datac13_nin = self.demodulate_audio(
self.sig0_datac13_buffer,
self.sig0_datac13_nin,
self.sig0_datac13_freedv,
self.sig0_datac13_bytes_out,
self.sig0_datac13_bytes_per_frame,
SIG0_DATAC13_STATE,
"sig0-datac13"
2022-10-10 07:00:45 +00:00
)
def audio_sig1_datac13(self) -> None:
"""Receive data encoded with datac13 - 1"""
self.sig1_datac13_nin = self.demodulate_audio(
self.sig1_datac13_buffer,
self.sig1_datac13_nin,
self.sig1_datac13_freedv,
self.sig1_datac13_bytes_out,
self.sig1_datac13_bytes_per_frame,
SIG1_DATAC13_STATE,
"sig1-datac13"
)
def audio_dat0_datac4(self) -> None:
"""Receive data encoded with datac4"""
self.dat0_datac4_nin = self.demodulate_audio(
self.dat0_datac4_buffer,
self.dat0_datac4_nin,
self.dat0_datac4_freedv,
self.dat0_datac4_bytes_out,
self.dat0_datac4_bytes_per_frame,
DAT0_DATAC4_STATE,
"dat0-datac4"
)
2022-10-10 07:00:45 +00:00
def audio_dat0_datac1(self) -> None:
"""Receive data encoded with datac1"""
2022-10-10 07:00:45 +00:00
self.dat0_datac1_nin = self.demodulate_audio(
self.dat0_datac1_buffer,
self.dat0_datac1_nin,
self.dat0_datac1_freedv,
self.dat0_datac1_bytes_out,
self.dat0_datac1_bytes_per_frame,
DAT0_DATAC1_STATE,
"dat0-datac1"
)
2022-05-09 00:41:49 +00:00
2022-10-10 07:00:45 +00:00
def audio_dat0_datac3(self) -> None:
"""Receive data encoded with datac3"""
2022-10-10 07:00:45 +00:00
self.dat0_datac3_nin = self.demodulate_audio(
self.dat0_datac3_buffer,
self.dat0_datac3_nin,
self.dat0_datac3_freedv,
self.dat0_datac3_bytes_out,
self.dat0_datac3_bytes_per_frame,
DAT0_DATAC3_STATE,
"dat0-datac3"
)
2022-05-09 00:41:49 +00:00
def audio_fsk_ldpc_0(self) -> None:
"""Receive data encoded with FSK + LDPC0"""
self.fsk_ldpc_nin_0 = self.demodulate_audio(
self.fsk_ldpc_buffer_0,
self.fsk_ldpc_nin_0,
self.fsk_ldpc_freedv_0,
self.fsk_ldpc_bytes_out_0,
self.fsk_ldpc_bytes_per_frame_0,
2023-03-04 09:59:43 +00:00
FSK_LDPC0_STATE,
"fsk_ldpc0",
)
def audio_fsk_ldpc_1(self) -> None:
"""Receive data encoded with FSK + LDPC1"""
self.fsk_ldpc_nin_1 = self.demodulate_audio(
self.fsk_ldpc_buffer_1,
self.fsk_ldpc_nin_1,
self.fsk_ldpc_freedv_1,
self.fsk_ldpc_bytes_out_1,
self.fsk_ldpc_bytes_per_frame_1,
2023-03-04 09:59:43 +00:00
FSK_LDPC1_STATE,
"fsk_ldpc1",
)
2023-11-08 13:24:54 +00:00
def init_data_threads(self):
# self.log.debug("[MDM] Starting worker_receive")
worker_received = threading.Thread(
target=self.worker_received, name="WORKER_THREAD", daemon=True
)
worker_received.start()
worker_transmit = threading.Thread(
target=self.worker_transmit, name="WORKER_THREAD", daemon=True
)
worker_transmit.start()
def worker_transmit(self) -> None:
"""Worker for FIFO queue for processing frames to be transmitted"""
while True:
# print queue size for debugging purposes
2023-10-22 08:04:10 +00:00
# TODO Lets check why we have several frames in our transmit queue which causes sometimes a double transmission
# we could do a cleanup after a transmission so theres no reason sending twice
queuesize = self.modem_transmit_queue.qsize()
self.log.debug("[MDM] self.modem_transmit_queue", qsize=queuesize)
data = self.modem_transmit_queue.get()
2022-05-09 00:41:49 +00:00
2023-05-17 13:23:49 +00:00
if data[0] in ["morse"]:
self.transmit_morse(repeats=data[1], repeat_delay=data[2], frames=data[3])
else:
self.transmit(
mode=data[0], repeats=data[1], repeat_delay=data[2], frames=data[3]
)
# self.modem_transmit_queue.task_done()
2022-05-09 00:41:49 +00:00
def worker_received(self) -> None:
"""Worker for FIFO queue for processing received frames"""
while True:
data = self.modem_received_queue.get()
self.log.debug("[MDM] worker_received: received data!")
2022-01-04 12:09:15 +00:00
# data[0] = bytes_out
# data[1] = freedv session
# data[2] = bytes_per_frame
2023-11-13 17:11:55 +00:00
# data[3] = snr
DATA_QUEUE_RECEIVED.put([data[0], data[1], data[2], data[3]])
self.modem_received_queue.task_done()
2022-05-09 00:41:49 +00:00
def get_frequency_offset(self, freedv: ctypes.c_void_p) -> float:
"""
Ask codec2 for the calculated (audio) frequency offset of the received signal.
2023-04-27 19:43:56 +00:00
Side-effect: sets ModemParam.frequency_offset
:param freedv: codec2 instance to query
:type freedv: ctypes.c_void_p
:return: Offset of audio frequency in Hz
:rtype: float
"""
modemStats = codec2.MODEMSTATS()
codec2.api.freedv_get_modem_extended_stats(freedv, ctypes.byref(modemStats))
offset = round(modemStats.foff) * (-1)
2023-04-27 19:43:56 +00:00
ModemParam.frequency_offset = offset
return offset
2022-05-09 00:41:49 +00:00
def get_scatter(self, freedv: ctypes.c_void_p) -> None:
"""
Ask codec2 for data about the received signal and calculate the scatter plot.
:param freedv: codec2 instance to query
:type freedv: ctypes.c_void_p
"""
2023-11-13 17:11:55 +00:00
if not self.enable_scatter:
return
modemStats = codec2.MODEMSTATS()
2022-10-12 08:45:17 +00:00
ctypes.cast(
codec2.api.freedv_get_modem_extended_stats(freedv, ctypes.byref(modemStats)),
2022-10-12 08:45:17 +00:00
ctypes.c_void_p,
)
scatterdata = []
2022-12-26 11:49:01 +00:00
# original function before itertool
2023-01-31 16:44:46 +00:00
# for i in range(codec2.MODEM_STATS_NC_MAX):
2022-12-26 11:49:01 +00:00
# for j in range(1, codec2.MODEM_STATS_NR_MAX, 2):
# # print(f"{modemStats.rx_symbols[i][j]} - {modemStats.rx_symbols[i][j]}")
# xsymbols = round(modemStats.rx_symbols[i][j - 1] // 1000)
# ysymbols = round(modemStats.rx_symbols[i][j] // 1000)
# if xsymbols != 0.0 and ysymbols != 0.0:
# scatterdata.append({"x": str(xsymbols), "y": str(ysymbols)})
for i, j in itertools.product(range(codec2.MODEM_STATS_NC_MAX), range(1, codec2.MODEM_STATS_NR_MAX, 2)):
# print(f"{modemStats.rx_symbols[i][j]} - {modemStats.rx_symbols[i][j]}")
xsymbols = round(modemStats.rx_symbols[i][j - 1] // 1000)
ysymbols = round(modemStats.rx_symbols[i][j] // 1000)
if xsymbols != 0.0 and ysymbols != 0.0:
scatterdata.append({"x": str(xsymbols), "y": str(ysymbols)})
# Send all the data if we have too-few samples, otherwise send a sampling
if 150 > len(scatterdata) > 0:
2023-11-12 22:22:53 +00:00
self.event_manager.send_scatter_change(scatterdata)
else:
# only take every tenth data point
2023-11-12 22:22:53 +00:00
self.event_manager.send_scatter_change(scatterdata[::10])
2022-10-12 08:45:17 +00:00
def calculate_snr(self, freedv: ctypes.c_void_p) -> float:
"""
Ask codec2 for data about the received signal and calculate
the signal-to-noise ratio.
Side effect: sets ModemParam.snr
:param freedv: codec2 instance to query
:type freedv: ctypes.c_void_p
:return: Signal-to-noise ratio of the decoded data
:rtype: float
"""
try:
modem_stats_snr = ctypes.c_float()
modem_stats_sync = ctypes.c_int()
2021-09-25 13:24:25 +00:00
codec2.api.freedv_get_modem_stats(
freedv, ctypes.byref(modem_stats_sync), ctypes.byref(modem_stats_snr)
)
modem_stats_snr = modem_stats_snr.value
modem_stats_sync = modem_stats_sync.value
snr = round(modem_stats_snr, 1)
self.log.info("[MDM] calculate_snr: ", snr=snr)
2023-04-27 19:43:56 +00:00
ModemParam.snr = snr
# ModemParam.snr = np.clip(
2022-11-09 19:47:46 +00:00
# snr, -127, 127
2023-01-31 16:44:46 +00:00
# ) # limit to max value of -128/128 as a possible fix of #188
2023-04-27 19:43:56 +00:00
return ModemParam.snr
except Exception as err:
self.log.error(f"[MDM] calculate_snr: Exception: {err}")
2023-04-27 19:43:56 +00:00
ModemParam.snr = 0
return ModemParam.snr
2021-12-25 16:05:38 +00:00
2023-11-08 13:24:54 +00:00
def init_rig_control(self):
# Check how we want to control the radio
if HamlibParam.hamlib_radiocontrol == "rigctld":
import rigctld as rig
elif HamlibParam.hamlib_radiocontrol == "tci":
self.radio = self.tci_module
else:
import rigdummy as rig
if not HamlibParam.hamlib_radiocontrol in ["tci"]:
self.radio = rig.radio()
self.radio.open_rig(
rigctld_ip=HamlibParam.hamlib_rigctld_ip,
rigctld_port=HamlibParam.hamlib_rigctld_port,
)
hamlib_thread = threading.Thread(
target=self.update_rig_data, name="HAMLIB_THREAD", daemon=True
)
hamlib_thread.start()
hamlib_set_thread = threading.Thread(
target=self.set_rig_data, name="HAMLIB_SET_THREAD", daemon=True
)
hamlib_set_thread.start()
def set_rig_data(self) -> None:
"""
Set rigctld parameters like frequency, mode
THis needs to be processed in a queue
"""
while True:
cmd = RIGCTLD_COMMAND_QUEUE.get()
if cmd[0] == "set_frequency":
# [1] = Frequency
2023-03-29 05:47:31 +00:00
self.radio.set_frequency(cmd[1])
2023-01-04 19:12:03 +00:00
if cmd[0] == "set_mode":
# [1] = Mode
2023-03-29 05:47:31 +00:00
self.radio.set_mode(cmd[1])
def update_rig_data(self) -> None:
"""
Request information about the current state of the radio via hamlib
Side effect: sets
2023-04-27 19:43:56 +00:00
- HamlibParam.hamlib_frequency
- HamlibParam.hamlib_mode
- HamlibParam.hamlib_bandwidth
"""
while True:
2023-05-20 07:53:57 +00:00
try:
# this looks weird, but is necessary for avoiding rigctld packet colission sock
threading.Event().wait(0.25)
HamlibParam.hamlib_frequency = self.radio.get_frequency()
2023-02-01 12:39:18 +00:00
threading.Event().wait(0.1)
2023-05-20 07:53:57 +00:00
HamlibParam.hamlib_mode = self.radio.get_mode()
threading.Event().wait(0.1)
HamlibParam.hamlib_bandwidth = self.radio.get_bandwidth()
threading.Event().wait(0.1)
HamlibParam.hamlib_status = self.radio.get_status()
threading.Event().wait(0.1)
if Modem.transmitting:
2023-05-20 07:53:57 +00:00
HamlibParam.alc = self.radio.get_alc()
threading.Event().wait(0.1)
# HamlibParam.hamlib_rf = self.radio.get_level()
# threading.Event().wait(0.1)
HamlibParam.hamlib_strength = self.radio.get_strength()
# print(f"ALC: {HamlibParam.alc}, RF: {HamlibParam.hamlib_rf}, STRENGTH: {HamlibParam.hamlib_strength}")
except Exception as e:
self.log.warning(
"[MDM] error getting radio data",
e=e,
)
threading.Event().wait(1)
2023-11-09 16:14:22 +00:00
def calculate_fft(self, data) -> None:
"""
Calculate an average signal strength of the channel to assess
whether the channel is "busy."
"""
2022-11-18 14:19:41 +00:00
# Initialize dbfs counter
2022-10-12 09:32:09 +00:00
rms_counter = 0
2023-11-09 16:14:22 +00:00
# https://gist.github.com/ZWMiller/53232427efc5088007cab6feee7c6e4c
# Fast Fourier Transform, 10*log10(abs) is to scale it to dB
# and make sure it's not imaginary
try:
fftarray = np.fft.rfft(data)
# Set value 0 to 1 to avoid division by zero
fftarray[fftarray == 0] = 1
dfft = 10.0 * np.log10(abs(fftarray))
# get average of dfft
avg = np.mean(dfft)
# Detect signals which are higher than the
# average + 10 (+10 smoothes the output).
# Data higher than the average must be a signal.
# Therefore we are setting it to 100 so it will be highlighted
# Have to do this when we are not transmitting so our
# own sending data will not affect this too much
if not Modem.transmitting:
dfft[dfft > avg + 15] = 100
# Calculate audio dbfs
# https://stackoverflow.com/a/9763652
# calculate dbfs every 50 cycles for reducing CPU load
rms_counter += 1
if rms_counter > 50:
d = np.frombuffer(data, np.int16).astype(np.float32)
# calculate RMS and then dBFS
# https://dsp.stackexchange.com/questions/8785/how-to-compute-dbfs
# try except for avoiding runtime errors by division/0
try:
rms = int(np.sqrt(np.max(d ** 2)))
if rms == 0:
raise ZeroDivisionError
2023-11-13 17:11:55 +00:00
audio_dbfs = 20 * np.log10(rms / 32768)
self.states.set("audio_dbfs", audio_dbfs)
2023-11-09 16:14:22 +00:00
except Exception as e:
2023-11-13 17:11:55 +00:00
self.states.set("audio_dbfs", -100)
2023-11-09 16:14:22 +00:00
rms_counter = 0
# Convert data to int to decrease size
dfft = dfft.astype(int)
# Create list of dfft
2023-11-09 16:14:22 +00:00
dfftlist = dfft.tolist()
# Reduce area where the busy detection is enabled
# We want to have this in correlation with mode bandwidth
# TODO This is not correctly and needs to be checked for correct maths
# dfftlist[0:1] = 10,15Hz
# Bandwidth[Hz] / 10,15
# narrowband = 563Hz = 56
# wideband = 1700Hz = 167
# 1500Hz = 148
# 2700Hz = 266
# 3200Hz = 315
# slot
slot = 0
slot1 = [0, 65]
slot2 = [65,120]
slot3 = [120, 176]
slot4 = [176, 231]
slot5 = [231, len(dfftlist)]
# Set to true if we should increment delay count; else false to decrement
addDelay=False
for range in [slot1, slot2, slot3, slot4, slot5]:
range_start = range[0]
range_end = range[1]
# define the area, we are detecting busy state
#dfft = dfft[120:176] if Modem.low_bandwidth_mode else dfft[65:231]
slotdfft = dfft[range_start:range_end]
# Check for signals higher than average by checking for "100"
# If we have a signal, increment our channel_busy delay counter
# so we have a smoother state toggle
if np.sum(slotdfft[slotdfft > avg + 15]) >= 200 and not Modem.transmitting:
addDelay=True
self.states.channel_busy_slot[slot] = True
2023-11-09 16:14:22 +00:00
else:
self.states.channel_busy_slot[slot] = False
2023-11-09 16:14:22 +00:00
# increment slot
slot += 1
if addDelay:
# Limit delay counter to a maximum of 200. The higher this value,
# the longer we will wait until releasing state
2023-11-11 19:52:29 +00:00
self.states.set("channel_busy", True)
self.channel_busy_delay = min(self.channel_busy_delay + 10, 200)
2023-11-09 16:14:22 +00:00
else:
# Decrement channel busy counter if no signal has been detected.
self.channel_busy_delay = max(self.channel_busy_delay - 1, 0)
2023-11-09 16:14:22 +00:00
# When our channel busy counter reaches 0, toggle state to False
if self.channel_busy_delay == 0:
2023-11-11 19:52:29 +00:00
self.states.set("channel_busy", False)
2023-11-09 16:14:22 +00:00
# erase queue if greater than 10
if self.fft_queue.qsize() >= 10:
self.fft_queue = queue.Queue()
self.fft_queue.put(dfftlist[:315]) # 315 --> bandwidth 3200
except Exception as err:
self.log.error(f"[MDM] calculate_fft: Exception: {err}")
self.log.debug("[MDM] Setting fft=0")
# else 0
self.fft_queue.put([0])
2022-05-09 00:41:49 +00:00
def set_frames_per_burst(self, frames_per_burst: int) -> None:
"""
Configure codec2 to send the configured number of frames per burst.
:param frames_per_burst: Number of frames per burst requested
:type frames_per_burst: int
"""
# Limit frames per burst to acceptable values
frames_per_burst = min(frames_per_burst, 1)
frames_per_burst = max(frames_per_burst, 5)
frames_per_burst = 1
2022-10-10 07:00:45 +00:00
codec2.api.freedv_set_frames_per_burst(self.dat0_datac1_freedv, frames_per_burst)
codec2.api.freedv_set_frames_per_burst(self.dat0_datac3_freedv, frames_per_burst)
codec2.api.freedv_set_frames_per_burst(self.dat0_datac4_freedv, frames_per_burst)
codec2.api.freedv_set_frames_per_burst(self.fsk_ldpc_freedv_0, frames_per_burst)
def reset_data_sync(self) -> None:
"""
reset sync state for data modes
:param frames_per_burst: Number of frames per burst requested
:type frames_per_burst: int
"""
codec2.api.freedv_set_sync(self.dat0_datac1_freedv, 0)
codec2.api.freedv_set_sync(self.dat0_datac3_freedv, 0)
codec2.api.freedv_set_sync(self.dat0_datac4_freedv, 0)
codec2.api.freedv_set_sync(self.fsk_ldpc_freedv_0, 0)
def open_codec2_instance(mode: int) -> ctypes.c_void_p:
"""
Return a codec2 instance of the type `mode`
:param mode: Type of codec2 instance to return
:type mode: Union[int, str]
:return: C-function of the requested codec2 instance
:rtype: ctypes.c_void_p
"""
if mode in [codec2.FREEDV_MODE.fsk_ldpc_0.value]:
return ctypes.cast(
codec2.api.freedv_open_advanced(
2023-04-21 13:10:40 +00:00
codec2.FREEDV_MODE.fsk_ldpc.value,
ctypes.byref(codec2.api.FREEDV_MODE_FSK_LDPC_0_ADV),
),
ctypes.c_void_p,
)
if mode in [codec2.FREEDV_MODE.fsk_ldpc_1.value]:
return ctypes.cast(
codec2.api.freedv_open_advanced(
2023-04-21 13:10:40 +00:00
codec2.FREEDV_MODE.fsk_ldpc.value,
ctypes.byref(codec2.api.FREEDV_MODE_FSK_LDPC_1_ADV),
),
ctypes.c_void_p,
)
return ctypes.cast(codec2.api.freedv_open(mode), ctypes.c_void_p)
def get_bytes_per_frame(mode: int) -> int:
"""
Provide bytes per frame information for accessing from data handler
:param mode: Codec2 mode to query
:type mode: int or str
:return: Bytes per frame of the supplied codec2 data mode
:rtype: int
"""
freedv = open_codec2_instance(mode)
2023-10-22 08:04:10 +00:00
# TODO add close session
# get number of bytes per frame for mode
return int(codec2.api.freedv_get_bits_per_modem_frame(freedv) / 8)
def set_audio_volume(datalist: np.ndarray, dB: float) -> np.ndarray:
"""
Scale values for the provided audio samples by dB.
:param datalist: Audio samples to scale
:type datalist: np.ndarray
:param dB: Decibels to scale samples, constrained to the range [-50, 50]
:type dB: float
:return: Scaled audio samples
:rtype: np.ndarray
"""
try:
dB = float(dB)
except ValueError as e:
print(f"[MDM] Changing audio volume failed with error: {e}")
dB = 0.0 # 0 dB means no change
# Clip dB value to the range [-50, 50]
dB = np.clip(dB, -30, 20)
# Ensure datalist is an np.ndarray
if not isinstance(datalist, np.ndarray):
print("[MDM] Invalid data type for datalist. Expected np.ndarray.")
return datalist
# Convert dB to linear scale
scale_factor = 10 ** (dB / 20)
# Scale samples
scaled_data = datalist * scale_factor
# Clip values to int16 range and convert data type
return np.clip(scaled_data, -32768, 32767).astype(np.int16)
def get_modem_error_state():
"""
get current state buffer and return True of contains 10
"""
if RECEIVE_DATAC1 and 10 in DAT0_DATAC1_STATE:
DAT0_DATAC1_STATE.clear()
return True
if RECEIVE_DATAC3 and 10 in DAT0_DATAC3_STATE:
DAT0_DATAC3_STATE.clear()
return True
if RECEIVE_DATAC4 and 10 in DAT0_DATAC4_STATE:
DAT0_DATAC4_STATE.clear()
return True
return False