ESP32_ChinaDieselHeater_Con.../Arduino/BTCDieselHeater/TxManage.cpp
rljonesau 388aef2c48 Screen5 completed - can set and save fuel settings OK.
Also enhanced pump setters/getters to use float.
Added selection box methods to CScreen
2018-11-28 22:15:23 +11:00

169 lines
5.4 KiB
C++

/*
* This file is part of the "bluetoothheater" distribution
* (https://gitlab.com/mrjones.id.au/bluetoothheater)
*
* Copyright (C) 2018 Ray Jones <ray@mrjones.id.au>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "TxManage.h"
#include "NVStorage.h"
extern void DebugReportFrame(const char* hdr, const CProtocol&, const char* ftr);
// CTxManage is used to send a data frame to the blue wire
//
// As the blue wire is bidirectional, we need to only allow our transmit data
// to reach the blue wire when we actually want to send data.
// At all other times we are listening to the blue wire, receiving any async data
//
// This requires external circuitry to toggle the Tx/Rx modes.
// A "Tx Gating" signal is used.
// when high, transmit data is sent to the blue wire
// when low, transmit data is blocked (Hi-Z)
//
// Ideally the circuit also prevents feeding back our own Tx data into the Rx pin
// but the main software loop handles this situation by only accepting Rx data when expected.
//
// Timing diagram
// ____________________
// Tx Gate ____________________| |___________________________
// _____________________________________________________________________
// Tx Data |||||||||||||||
CTxManage::CTxManage(int TxGatePin, HardwareSerial& serial) :
m_BlueWireSerial(serial),
m_TxFrame(CProtocol::CtrlMode)
{
m_bOnReq = false;
m_bOffReq = false;
m_bTxPending = false;
m_nStartTime = 0;
m_nTxGatePin = TxGatePin;
_rawCommand = 0;
}
void CTxManage::begin()
{
pinMode(m_nTxGatePin, OUTPUT);
digitalWrite(m_nTxGatePin, LOW); // default to receive mode
}
void
CTxManage::queueOnRequest(bool set)
{
m_bOnReq = set; // allow cancellation via heater response frame decode
m_bOffReq = false;
}
void
CTxManage::queueOffRequest(bool set)
{
m_bOffReq = set; // allow cancellation via heater response frame decode
m_bOnReq = false;
}
void
CTxManage::queueRawCommand(unsigned char val)
{
_rawCommand = val;
}
void
CTxManage::PrepareFrame(const CProtocol& basisFrame, bool isBTCmaster)
{
// copy supplied frame, typically this will be the values an OEM controller delivered
// which means we parrot that data by default.
// When parroting, we must especially avoid ping ponging "set temperature"!
// Otherwise we are supplied with the default params for standalone mode, which we
// then instil the NV parameters
m_TxFrame = basisFrame;
// ALWAYS install on/off commands if required
m_TxFrame.resetCommand(); // no command upon blue wire initially, unless a request is pending
if(_rawCommand) {
m_TxFrame.setRawCommand(_rawCommand);
_rawCommand = 0;
}
else {
if(m_bOnReq) {
// m_bOnReq = false; // requires cancel via queueOnRequest(false)
m_TxFrame.onCommand();
}
if(m_bOffReq) {
// m_bOffReq = false; // requires cancel via queueOffRequest(false)
m_TxFrame.offCommand();
}
}
// 0x78 prevents the controller showing bum information when we parrot the OEM controller
// heater is happy either way, the OEM controller has set the max/min stuff already
if(isBTCmaster) {
m_TxFrame.setActiveMode(); // this allows heater to save the tuning params to EEPROM
m_TxFrame.setFan_Min(NVstore.getFmin());
m_TxFrame.setFan_Max(NVstore.getFmax());
m_TxFrame.setPump_Min(NVstore.getPmin());
m_TxFrame.setPump_Max(NVstore.getPmax());
m_TxFrame.setThermostatMode(NVstore.getThermostatMode());
m_TxFrame.setTemperature_Desired(NVstore.getTemperature());
}
else {
m_TxFrame.setPassiveMode(); // this prevents the tuning parameters being saved by heater
}
// ensure CRC valid
m_TxFrame.setCRC();
}
void
CTxManage::Start(unsigned long timenow)
{
if(timenow == 0) // avoid a black hole if millis() has wrapped to zero
timenow++;
m_nStartTime = timenow;
m_bTxPending = true;
}
// generate a Tx Gate, then send the TxFrame to the Blue wire
// Note the serial data is ISR driven, we need to hold off
// for a while to let teh buffewred dat clear before closing the Tx Gate.
bool
CTxManage::CheckTx(unsigned long timenow)
{
if(m_nStartTime) {
long diff = timenow - m_nStartTime;
if(diff > m_nStartDelay) {
// begin front porch of Tx gating pulse
digitalWrite(m_nTxGatePin, HIGH);
}
if(m_bTxPending && (diff > (m_nStartDelay + m_nFrontPorch))) {
// front porch expired, perform serial transmission
// Tx gate remains held high
m_bTxPending = false;
m_BlueWireSerial.write(m_TxFrame.Data, 24); // write native binary values
}
if(diff > (m_nStartDelay + m_nFrameTime)) {
// conclude Tx gating after (emperical) delay
digitalWrite(m_nTxGatePin, LOW);
m_nStartTime = 0; // cancel, we are DONE
}
}
return m_nStartTime == 0; // returns true when done
}