ESP32_ChinaDieselHeater_Con.../Arduino/BTCDieselHeater/BTCDieselHeater.ino
2018-12-07 22:16:04 +11:00

951 lines
28 KiB
C++

/*
* This file is part of the "bluetoothheater" distribution
* (https://gitlab.com/mrjones.id.au/bluetoothheater)
*
* Copyright (C) 2018 Ray Jones <ray@mrjones.id.au>
* Copyright (C) 2018 James Clark
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/*
Chinese Heater Half Duplex Serial Data Sending Tool
Connects to the blue wire of a Chinese heater, which is the half duplex serial link.
Sends and receives data from hardware serial port 1.
Terminology: Tx is to the heater unit, Rx is from the heater unit.
Typical data frame timing on the blue wire is:
__Tx_Rx____________________________Tx_Rx____________________________Tx_Rx___________
This software can connect to the blue wire in a normal OEM system, detecting the
OEM controller and allowing extraction of the data or injecting on/off commands.
If Pin 21 is grounded on the Due, this simple stream will be reported over Serial and
no control from the Arduino will be allowed.
This allows passive sniffing of the blue wire in a normal system.
The binary data is received from the line.
If it has been > 100ms since the last blue wire activity this indicates a new frame
sequence is starting from the OEM controller.
Synchronise as such then count off the next 24 bytes storing them in the Controller's
data array. These bytes are then reported over Serial to the PC in ASCII.
It is then expected the heater will respond with it's 24 bytes.
Capture those bytes and store them in the Heater1 data array.
Once again these bytes are then reported over Serial to the PC in ASCII.
If no activity is sensed in a second, it is assumed no OEM controller is attached and we
have full control over the heater.
Either way we can now inject a message onto the blue wire allowing our custom
on/off control.
We must remain synchronous with an OEM controller if it exists otherwise E-07
faults will be caused.
Typical data frame timing on the blue wire is then:
__OEMTx_HtrRx__OurTx_HtrRx____________OEMTx_HtrRx__OurTx_HtrRx____________OEMTx_HtrRx__OurTx_HtrRx_________
The second HtrRx to the next OEMTx delay is always > 100ms and is paced by the OEM controller.
The delay before seeing Heater Rx data after any Tx is usually much less than 10ms.
But this does rise if new max/min or voltage settings are sent.
**The heater only ever sends Rx data in response to a data frame from a controller**
For Bluetooth connectivity, a HC-05 Bluetooth module is attached to Serial2:
TXD -> Rx2 (pin 17)
RXD -> Tx2 (pin 16)
EN(key) -> pin 15
STATE -> pin 4
This code only works with boards that have more than one hardware serial port like Arduino
Mega, Due, Zero, ESP32 etc.
The circuit:
- a Tx Rx multiplexer is required to combine the Arduino's Tx1 And Rx1 pins onto the blue wire.
- a Tx Enable signal from pin 22 controls the multiplexer, high for Tx, low for Rx
- Serial logging software on Serial0 via USB link
created 23 Sep 2018 by Ray Jones
This example code is in the public domain.
*/
#include "BTCWebServer.h"
#include "Protocol.h"
#include "TxManage.h"
#include "pins.h"
#include "NVStorage.h"
#include "debugport.h"
#include "SmartError.h"
#include "BTCWifi.h"
#include "BTCConfig.h"
#include "UtilClasses.h"
#include "BTCota.h"
#include "BTCWebServer.h"
#include "ScreenManager.h"
#include <OneWire.h>
#include <DallasTemperature.h>
#include "keypad.h"
#include "helpers.h"
#include <time.h>
#include "RTClib.h"
#define FAILEDSSID "BTCESP32"
#define FAILEDPASSWORD "thereisnospoon"
#define RX_DATA_TIMOUT 50
//comment this out to remove TELNET
//#define TELNET
#ifdef TELNET
#define DebugPort Debug
#endif
#ifdef ESP32
#include "BluetoothESP32.h"
#else
#include "BluetoothHC05.h"
#endif
// Setup Serial Port Definitions
#if defined(__arm__)
// Required for Arduino Due, UARTclass is derived from HardwareSerial
static UARTClass& BlueWireSerial(Serial1);
#else
// for ESP32, Mega
// HardwareSerial is it for these boards
static HardwareSerial& BlueWireSerial(Serial1);
#endif
void initBlueWireSerial();
bool validateFrame(const CProtocol& frame, const char* name);
void checkDisplayUpdate();
// DS18B20 temperature sensor support
OneWire ds(DS18B20_Pin); // on pin 5 (a 4.7K resistor is necessary)
DallasTemperature TempSensor(&ds);
long lastTemperatureTime; // used to moderate DS18B20 access
float fFilteredTemperature = -100; // -100: force direct update uopn first pass
const float fAlpha = 0.95; // exponential mean alpha
unsigned long lastAnimationTime; // used to sequence updates to LCD for animation
CommStates CommState;
CTxManage TxManage(TxEnbPin, BlueWireSerial);
CModeratedFrame OEMCtrlFrame; // data packet received from heater in response to OEM controller packet
CModeratedFrame HeaterFrame1; // data packet received from heater in response to OEM controller packet
CProtocol HeaterFrame2; // data packet received from heater in response to our packet
CProtocol DefaultBTCParams(CProtocol::CtrlMode); // defines the default parameters, used in case of no OEM controller
CSmartError SmartError;
CKeyPad KeyPad;
CScreenManager ScreenManager;
RTC_DS3231 rtc;
sRxLine PCline;
long lastRxTime; // used to observe inter character delays
bool hasOEMController = false;
//const CProtocol* pRxFrame = NULL;
//const CProtocol* pTxFrame = NULL;
CProtocolPackage HeaterData;
unsigned long moderator;
bool bUpdateDisplay = false;
bool bHaveWebClient = false;
////////////////////////////////////////////////////////////////////////////////////////////////////////
// Bluetooth instantiation
//
#ifdef ESP32
// Bluetooth options for ESP32
#if USE_HC05_BLUETOOTH == 1
CBluetoothESP32HC05 Bluetooth(HC05_KeyPin, HC05_SensePin, Rx2Pin, Tx2Pin); // Instantiate ESP32 using a HC-05
#elif USE_BLE_BLUETOOTH == 1
CBluetoothESP32BLE Bluetooth; // Instantiate ESP32 BLE server
#elif USE_CLASSIC_BLUETOOTH == 1
CBluetoothESP32Classic Bluetooth; // Instantiate ESP32 Classic Bluetooth server
#else // none selected
CBluetoothAbstract Bluetooth; // default no bluetooth support - empty shell
#endif
#else // !ESP32
// Bluetooth for boards other than ESP32
#if USE_HC05_BLUETOOTH == 1
CBluetoothHC05 Bluetooth(HC05_KeyPin, HC05_SensePin); // Instantiate a HC-05
#else // none selected
CBluetoothAbstract Bluetooth; // default no bluetooth support - empty shell
#endif // closing USE_HC05_BLUETOOTH
#endif // closing ESP32
//
// END Bluetooth instantiation
////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////
// setup Non Volatile storage
// this is very much hardware dependent, we can use the ESP32's FLASH
//
#ifdef ESP32
CESP32HeaterStorage actualNVstore;
#else
CHeaterStorage actualNVstore; // dummy, for now
#endif
// create reference to CHeaterStorage
// via the magic of polymorphism we can use this to access whatever
// storage is required for a specific platform in a uniform way
CHeaterStorage& NVstore = actualNVstore;
//
////////////////////////////////////////////////////////////////////////////////////////////////////////
CBluetoothAbstract& getBluetoothClient()
{
return Bluetooth;
}
// callback function for Keypad events.
// must be an absolute function, cannot be a class member due the "this" element!
void parentKeyHandler(uint8_t event)
{
ScreenManager.keyHandler(event); // call into the Screen Manager
}
void setup() {
// initialise serial monitor on serial port 0
// this is the usual USB connection to a PC
// DO THIS BEFORE WE TRY AND SEND DEBUG INFO!
DebugPort.begin(115200);
NVstore.init();
NVstore.load();
KeyPad.init(keyLeft_pin, keyRight_pin, keyCentre_pin, keyUp_pin, keyDown_pin);
KeyPad.setCallback(parentKeyHandler);
// Initialize the rtc object
rtc.begin();
// initialise DS18B20 temperature sensor(s)
TempSensor.begin();
TempSensor.setWaitForConversion(false);
TempSensor.requestTemperatures();
lastTemperatureTime = millis();
lastAnimationTime = millis();
ScreenManager.init();
#if USE_WIFI == 1
initWifi(WiFi_TriggerPin, FAILEDSSID, FAILEDPASSWORD);
#if USE_OTA == 1
initOTA();
#endif // USE_OTA
#if USE_WEBSERVER == 1
initWebServer();
#endif // USE_WEBSERVER
#endif // USE_WIFI
pinMode(ListenOnlyPin, INPUT_PULLUP); // pin to enable passive mode
pinMode(LED_Pin, OUTPUT); // On board LED indicator
digitalWrite(LED_Pin, LOW);
initBlueWireSerial();
// prepare for first long delay detection
lastRxTime = millis();
TxManage.begin(); // ensure Tx enable pin is setup
// define defaults should OEM controller be missing
DefaultBTCParams.setTemperature_Desired(23);
DefaultBTCParams.setTemperature_Actual(22);
DefaultBTCParams.Controller.OperatingVoltage = 120;
DefaultBTCParams.setPump_Min(1.6f);
DefaultBTCParams.setPump_Max(5.5f);
DefaultBTCParams.setFan_Min(1680);
DefaultBTCParams.setFan_Max(4500);
Bluetooth.init();
}
// main functional loop is based about a state machine approach, waiting for data
// to appear upon the blue wire, and marshalling into an appropriate receive buffers
// according to the state.
void loop()
{
float fTemperature;
unsigned long timenow = millis();
#if USE_WIFI == 1
doWiFiManager();
#if USE_OTA == 1
DoOTA();
#endif // USE_OTA
#if USE_WEBSERVER == 1
bHaveWebClient = doWebServer();
#endif //USE_WEBSERVER
#endif // USE_WIFI
// check for test commands received from PC Over USB
if(DebugPort.available()) {
static int mode = 0;
static int val = 0;
char rxVal = DebugPort.read();
bool bSendVal = false;
if(isControl(rxVal)) { // "End of Line"
String convert(PCline.Line);
val = convert.toInt();
bSendVal = true;
PCline.clear();
}
else {
if(isDigit(rxVal)) {
PCline.append(rxVal);
}
else if((rxVal == 'p') || (rxVal == 'P')) {
DebugPort.println("Test Priming Byte... ");
mode = 1;
}
else if((rxVal == 'g') || (rxVal == 'G')) {
DebugPort.println("Test glow power byte... ");
mode = 2;
}
else if((rxVal == 'i') || (rxVal == 'I')) {
DebugPort.println("Test fan bytes");
mode = 3;
}
else if(rxVal == '+') {
TxManage.queueOnRequest();
Bluetooth.setRefTime(); // reset time reference "run time"
}
else if(rxVal == '-') {
TxManage.queueOffRequest();
Bluetooth.setRefTime();
}
else if(rxVal == ']') {
val++;
bSendVal = true;
}
else if(rxVal == '[') {
val--;
bSendVal = true;
}
else if(rxVal == '=') {
int hour = 0;
int min = 0;
char buffer[16];
DebugPort.readBytesUntil('\n', buffer, 15);
sscanf(buffer, "%d:%d", &hour, &min);
DebugPort.print("New time=");
DebugPort.print(hour);DebugPort.print(":");DebugPort.println(min);
struct timeval tv = {1543030148, 0};
settimeofday(&tv, 0);
}
}
if(bSendVal) {
switch(mode) {
case 1:
DefaultBTCParams.Controller.Prime = val & 0xff; // always 0x32:Thermostat, 0xCD:Fixed
break;
case 2:
DefaultBTCParams.Controller.MinTempRise = val & 0xff; // always 0x05
break;
case 3:
DefaultBTCParams.Controller.Unknown2_MSB = (val >> 8) & 0xff; // always 0x0d
DefaultBTCParams.Controller.Unknown2_LSB = (val >> 0) & 0xff; // always 0xac 16bit: "3500" ?? Ignition fan max RPM????
break;
}
}
}
uint8_t key = KeyPad.update();
/* if(key) {
Serial.print("\007Key event=0x");
Serial.println(key, HEX);
}*/
Bluetooth.check(); // check for Bluetooth activity
//////////////////////////////////////////////////////////////////////////////////////
// Blue wire data reception
// Reads data from the "blue wire" Serial port, (to/from heater)
// If an OEM controller exists we will also see it's data frames
// Note that the data is read now, then held for later use in the state machine
//
sRxData BlueWireData;
if (BlueWireSerial.available()) {
// Data is avaialable, read and store it now, use it later
// Note that if not in a recognised data receive frame state, the data
// will be deliberately lost!
BlueWireData.setValue(BlueWireSerial.read()); // read hex byte, store for later use
lastRxTime = timenow; // tickle last rx time, for rx data timeout purposes
}
// calc elapsed time since last rxd byte
// used to detect no OEM controller, or the start of an OEM frame sequence
unsigned long RxTimeElapsed = timenow - lastRxTime;
// precautionary state machine action if all 24 bytes were not received
// whilst expecting a frame from the blue wire
if(RxTimeElapsed > RX_DATA_TIMOUT) {
if( CommState.is(CommStates::OEMCtrlRx) ||
CommState.is(CommStates::HeaterRx1) ||
CommState.is(CommStates::HeaterRx2) ) {
if(RxTimeElapsed >= moderator) {
moderator += 10;
DebugPort.print(RxTimeElapsed);
DebugPort.print("ms - ");
if(CommState.is(CommStates::OEMCtrlRx)) {
DebugPort.println("Timeout collecting OEM controller data, returning to Idle State");
}
else if(CommState.is(CommStates::HeaterRx1)) {
DebugPort.println("Timeout collecting OEM heater response data, returning to Idle State");
}
else {
DebugPort.println("Timeout collecting BTC heater response data, returning to Idle State");
}
}
DebugPort.println("\007Recycling blue wire serial interface");
initBlueWireSerial();
CommState.set(CommStates::Idle); // revert to idle mode
}
}
///////////////////////////////////////////////////////////////////////////////////////////
// do our state machine to track the reception and delivery of blue wire data
long tDelta;
switch(CommState.get()) {
case CommStates::Idle:
moderator = 50;
#if RX_LED == 1
digitalWrite(LED_Pin, LOW);
#endif
// Detect the possible start of a new frame sequence from an OEM controller
// This will be the first activity for considerable period on the blue wire
// The heater always responds to a controller frame, but otherwise never by itself
if(RxTimeElapsed >= 970) {
// have not seen any receive data for a second.
// OEM controller is probably not connected.
// Skip state machine immediately to BTC_Tx, sending our own settings.
hasOEMController = false;
bool isBTCmaster = true;
TxManage.PrepareFrame(DefaultBTCParams, isBTCmaster); // use our parameters, and mix in NV storage values
TxManage.Start(timenow);
CommState.set(CommStates::BTC_Tx);
break;
}
#if SUPPORT_OEM_CONTROLLER == 1
if(BlueWireData.available() && (RxTimeElapsed > RX_DATA_TIMOUT+10)) {
#ifdef REPORT_OEM_RESYNC
DebugPort.print("Re-sync'd with OEM Controller. ");
DebugPort.print(RxTimeElapsed);
DebugPort.println("ms Idle time.");
#endif
hasOEMController = true;
CommState.set(CommStates::OEMCtrlRx); // we must add this new byte!
//
// ** IMPORTANT - we must drop through to OEMCtrlRx *NOW* (skipping break) **
//
}
else {
checkDisplayUpdate();
break; // only break if we fail all Idle state tests
}
#else
checkDisplayUpdate();
break;
#endif
case CommStates::OEMCtrlRx:
#if RX_LED == 1
digitalWrite(LED_Pin, HIGH);
#endif
// collect OEM controller frame
if(BlueWireData.available()) {
if(CommState.collectData(OEMCtrlFrame, BlueWireData.getValue()) ) {
CommState.set(CommStates::OEMCtrlReport); // collected 24 bytes, move on!
}
}
break;
case CommStates::OEMCtrlReport:
#if RX_LED == 1
digitalWrite(LED_Pin, LOW);
#endif
// test for valid CRC, abort and restarts Serial1 if invalid
if(!validateFrame(OEMCtrlFrame, "OEM")) {
break;
}
// filled OEM controller frame, report
// echo received OEM controller frame over Bluetooth, using [OEM] header
// note that Rotary Knob and LED OEM controllers can flood the Bluetooth
// handling at the client side, moderate OEM Bluetooth delivery
if(OEMCtrlFrame.elapsedTime() > OEM_TO_BLUETOOTH_MODERATION_TIME) {
Bluetooth.sendFrame("[OEM]", OEMCtrlFrame, TERMINATE_OEM_LINE);
OEMCtrlFrame.setTime();
}
else {
#if REPORT_SUPPRESSED_OEM_DATA_FRAMES != 0
DebugPort.println("Suppressed delivery of OEM frame");
#endif
}
CommState.set(CommStates::HeaterRx1);
break;
case CommStates::HeaterRx1:
#if RX_LED == 1
digitalWrite(LED_Pin, HIGH);
#endif
// collect heater frame, always in response to an OEM controller frame
if(BlueWireData.available()) {
if( CommState.collectData(HeaterFrame1, BlueWireData.getValue()) ) {
CommState.set(CommStates::HeaterReport1);
}
}
break;
case CommStates::HeaterReport1:
#if RX_LED == 1
digitalWrite(LED_Pin, LOW);
#endif
// test for valid CRC, abort and restarts Serial1 if invalid
if(!validateFrame(HeaterFrame1, "RX1")) {
break;
}
// received heater frame (after controller message), report
// do some monitoring of the heater state variable
// if abnormal transitions, introduce a smart error!
// This will also cancel ON/OFF requests if runstate in startup/shutdown
SmartError.monitor(HeaterFrame1);
// echo heater reponse data to Bluetooth client
// note that Rotary Knob and LED OEM controllers can flood the Bluetooth
// handling at the client side, moderate OEM Bluetooth delivery
if(HeaterFrame1.elapsedTime() > OEM_TO_BLUETOOTH_MODERATION_TIME) {
Bluetooth.sendFrame("[HTR]", HeaterFrame1, true);
HeaterFrame1.setTime();
}
else {
#if REPORT_SUPPRESSED_OEM_DATA_FRAMES != 0
DebugPort.println("Suppressed delivery of OEM heater response frame");
#endif
}
if(digitalRead(ListenOnlyPin)) {
bool isBTCmaster = false;
while(BlueWireSerial.available()) {
DebugPort.println("DUMPED ROGUE RX DATA");
BlueWireSerial.read();
}
BlueWireSerial.flush();
TxManage.PrepareFrame(OEMCtrlFrame, isBTCmaster); // parrot OEM parameters, but block NV modes
TxManage.Start(timenow);
CommState.set(CommStates::BTC_Tx);
}
else {
// CommState.set(CommStates::Idle); // "Listen Only" input is held low, don't send out Tx
HeaterData.set(HeaterFrame1, OEMCtrlFrame);
// pRxFrame = &HeaterFrame1;
// pTxFrame = &OEMCtrlFrame;
CommState.set(CommStates::TemperatureRead); // "Listen Only" input is held low, don't send out Tx
}
break;
case CommStates::BTC_Tx:
// Handle time interval where we send data to the blue wire
lastRxTime = timenow; // *we* are pumping onto blue wire, track this activity!
if(TxManage.CheckTx(timenow) ) { // monitor progress of our data delivery
if(!hasOEMController) {
// only convey this frames to Bluetooth when NOT using an OEM controller!
Bluetooth.sendFrame("[BTC]", TxManage.getFrame(), TERMINATE_BTC_LINE); // BTC => Bluetooth Controller :-)
}
CommState.set(CommStates::HeaterRx2); // then await heater repsonse
}
break;
case CommStates::HeaterRx2:
#if RX_LED == 1
digitalWrite(LED_Pin, HIGH);
#endif
// collect heater frame, in response to our control frame
if(BlueWireData.available()) {
#ifdef BADSTARTCHECK
if(!CommState.checkValidStart(BlueWireData.getValue())) {
DebugPort.println("***** \007 Invalid start of frame - restarting Serial port *****");
initBlueWireSerial();
CommState.set(CommStates::Idle);
}
else {
if( CommState.collectData(HeaterFrame2, BlueWireData.getValue()) ) {
CommState.set(CommStates::HeaterReport2);
}
}
#else
if( CommState.collectData(HeaterFrame2, BlueWireData.getValue()) ) {
CommState.set(CommStates::HeaterReport2);
}
#endif
}
break;
case CommStates::HeaterReport2:
#if RX_LED == 1
digitalWrite(LED_Pin, LOW);
#endif
// test for valid CRC, abort and restarts Serial1 if invalid
if(!validateFrame(HeaterFrame2, "RX2")) {
break;
}
// received heater frame (after our control message), report
// do some monitoring of the heater state variables
// if abnormal transitions, introduce a smart error!
SmartError.monitor(HeaterFrame2);
delay(5);
if(!hasOEMController) {
// only convey these frames to Bluetooth when NOT using an OEM controller!
Bluetooth.sendFrame("[HTR]", HeaterFrame2, true); // pin not grounded, suppress duplicate to BT
}
CommState.set(CommStates::TemperatureRead);
HeaterData.set(HeaterFrame2, TxManage.getFrame());
// pRxFrame = &HeaterFrame2;
// pTxFrame = &TxManage.getFrame();
break;
case CommStates::TemperatureRead:
// update temperature reading,
// synchronised with serial reception as interrupts do get disabled in the OneWire library
tDelta = timenow - lastTemperatureTime;
if(tDelta > TEMPERATURE_INTERVAL) { // maintain a minimum holdoff period
lastTemperatureTime += TEMPERATURE_INTERVAL; // reset time to observe temeprature
fTemperature = TempSensor.getTempCByIndex(0); // read sensor
// initialise filtered temperature upon very first pass
if(fFilteredTemperature <= -90) { // avoid FP exactness issues
fFilteredTemperature = fTemperature; // prime with initial reading
}
// exponential mean to stabilse readings
fFilteredTemperature = fFilteredTemperature * fAlpha + (1-fAlpha) * fTemperature;
DefaultBTCParams.setTemperature_Actual((unsigned char)(fFilteredTemperature + 0.5)); // update [BTC] frame to send
TempSensor.requestTemperatures(); // prep sensor for future reading
ScreenManager.reqUpdate();
}
CommState.set(CommStates::Idle);
break;
} // switch(CommState)
BlueWireData.reset(); // ensure we flush any used data
} // loop
void DebugReportFrame(const char* hdr, const CProtocol& Frame, const char* ftr)
{
DebugPort.print(hdr); // header
for(int i=0; i<24; i++) {
char str[16];
sprintf(str, " %02X", Frame.Data[i]); // build 2 dig hex values
DebugPort.print(str); // and print
}
DebugPort.print(ftr); // footer
}
void Command_Interpret(const char* pLine)
{
unsigned char cVal;
unsigned short sVal;
float fVal;
if(strlen(pLine) == 0)
return;
#ifdef DEBUG_BTRX
DebugPort.println(pLine);
#endif
if(strncmp(pLine, "[CMD]", 5) == 0) {
// incoming command from BT app!
DebugPort.write(" Command decode: ");
pLine += 5; // skip past "[CMD]" header
if(strncmp(pLine, "ON", 2) == 0) {
TxManage.queueOnRequest();
DebugPort.println("Heater ON");
SmartError.reset();
Bluetooth.setRefTime();
}
else if(strncmp(pLine, "OFF", 3) == 0) {
TxManage.queueOffRequest();
DebugPort.println("Heater OFF");
SmartError.inhibit();
Bluetooth.setRefTime();
}
else if(strncmp(pLine, "Pmin", 4) == 0) {
pLine += 4;
fVal = atof(pLine);
NVstore.setPmin(fVal);
DebugPort.print("Pump min = "); DebugPort.println(fVal);
}
else if(strncmp(pLine, "Pmax", 4) == 0) {
pLine += 4;
fVal = atof(pLine);
NVstore.setPmax(fVal);
DebugPort.print("Pump max = "); DebugPort.println(fVal);
}
else if(strncmp(pLine, "Fmin", 4) == 0) {
pLine += 4;
sVal = atoi(pLine);
NVstore.setFmin(sVal);
DebugPort.print("Fan min = "); DebugPort.println(sVal);
}
else if(strncmp(pLine, "Fmax", 4) == 0) {
pLine += 4;
sVal = atoi(pLine);
NVstore.setFmax(sVal);
DebugPort.print("Fan max = "); DebugPort.println(int(sVal));
}
else if(strncmp(pLine, "save", 4) == 0) {
NVstore.save();
DebugPort.println("NV save");
}
else if(strncmp(pLine, "degC", 4) == 0) {
pLine += 4;
cVal = atoi(pLine);
NVstore.setTemperature(cVal);
DebugPort.print("degC = "); DebugPort.println(cVal);
}
else if(strncmp(pLine, "Mode", 4) == 0) {
pLine += 4;
cVal = !NVstore.getThermostatMode();
NVstore.setThermostatMode(cVal);
DebugPort.print("Mode now "); DebugPort.println(cVal ? "Thermostat" : "Fixed Hz");
}
else {
DebugPort.print(pLine); DebugPort.println(" ????");
}
}
}
void initBlueWireSerial()
{
// initialize serial port to interact with the "blue wire"
// 25000 baud, Tx and Rx channels of Chinese heater comms interface:
// Tx/Rx data to/from heater,
// Note special baud rate for Chinese heater controllers
#if defined(__arm__) || defined(__AVR__)
BlueWireSerial.begin(25000);
pinMode(Rx1Pin, INPUT_PULLUP); // required for MUX to work properly
#elif ESP32
// ESP32
BlueWireSerial.begin(25000, SERIAL_8N1, Rx1Pin, Tx1Pin); // need to explicitly specify pins for pin multiplexer!
pinMode(Rx1Pin, INPUT_PULLUP); // required for MUX to work properly
#endif
}
bool validateFrame(const CProtocol& frame, const char* name)
{
if(!frame.verifyCRC()) {
// Bad CRC - restart blue wire Serial port
DebugPort.print("\007Bad CRC detected for ");
DebugPort.print(name);
DebugPort.println(" frame - restarting blue wire's serial port");
char header[16];
sprintf(header, "[CRC_%s]", name);
DebugReportFrame(header, frame, "\r\n");
initBlueWireSerial();
CommState.set(CommStates::Idle);
return false;
}
return true;
}
void requestOn()
{
TxManage.queueOnRequest();
SmartError.reset();
Bluetooth.setRefTime();
}
void requestOff()
{
TxManage.queueOffRequest();
SmartError.inhibit();
Bluetooth.setRefTime();
}
void ToggleOnOff()
{
if(HeaterData.getRunState()) {
DebugPort.println("ToggleOnOff: Heater OFF");
requestOff();
}
else {
DebugPort.println("ToggleOnOff: Heater ON");
requestOn();
}
}
void reqTempChange(int val)
{
unsigned char curTemp = getSetTemp();
curTemp += val;
unsigned char max = DefaultBTCParams.getTemperature_Max();
unsigned char min = DefaultBTCParams.getTemperature_Min();
if(curTemp >= max)
curTemp = max;
if(curTemp <= min)
curTemp = min;
NVstore.setTemperature(curTemp);
ScreenManager.reqUpdate();
}
int getSetTemp()
{
return NVstore.getTemperature();
}
void reqThermoToggle()
{
setThermostatMode(getThermostatMode() ? 0 : 1);
}
void setThermostatMode(unsigned char val)
{
NVstore.setThermostatMode(val);
}
bool getThermostatMode()
{
return NVstore.getThermostatMode() != 0;
}
void checkDisplayUpdate()
{
// only update OLED when not processing blue wire
if(ScreenManager.checkUpdate()) {
lastAnimationTime = millis() + 100;
ScreenManager.animate();
ScreenManager.refresh(); // always refresh post major update
}
long tDelta = millis() - lastAnimationTime;
if(tDelta >= 100) {
lastAnimationTime = millis() + 100;
if(ScreenManager.animate())
ScreenManager.refresh();
}
}
void reqPumpPrime(bool on)
{
DefaultBTCParams.setPump_Prime(on);
}
float getActualTemperature()
{
return fFilteredTemperature;
}
void setPumpMin(float val)
{
NVstore.setPmin(val);
}
void setPumpMax(float val)
{
NVstore.setPmax(val);
}
void setFanMin(short cVal)
{
NVstore.setFmin(cVal);
}
void setFanMax(short cVal)
{
NVstore.setFmax(cVal);
}
void saveNV()
{
NVstore.save();
}
const CProtocolPackage& getHeaterInfo()
{
return HeaterData;
}
bool isWebClientConnected()
{
return bHaveWebClient;
}