ESP32_ChinaDieselHeater_Con.../Arduino/BTCDieselHeater/src/Utility/TempSense.cpp
Ray Jones 924a079fb2 Using new fantastic RMT based library for DS18B20, banished issues with dodgy readings from sensor.
Persistent variables now used for temperature, pump and cyclic mode enabled settings (not NV)
NV save is now staged, so it can be performed at an appropriate time, after reading DS18B20!
JSONpack, instead of lame JSONloose to allow single line JSON output
2019-06-29 18:08:37 +10:00

149 lines
3.5 KiB
C++

/*
* This file is part of the "bluetoothheater" distribution
* (https://gitlab.com/mrjones.id.au/bluetoothheater)
*
* Copyright (C) 2018 Ray Jones <ray@mrjones.id.au>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include <Arduino.h>
#include "TempSense.h"
#include "DebugPort.h"
CTempSense::CTempSense()
{
_TempSensor = NULL;
_owb = NULL;
}
void CTempSense::begin(int pin)
{
// initialise DS18B20 sensor interface
// create one wire bus interface, using RMT peripheral
_owb = owb_rmt_initialize(&_rmt_driver_info, pin, RMT_CHANNEL_1, RMT_CHANNEL_0);
owb_use_crc(_owb, true); // enable CRC check for ROM code
bool found = find();
readROMcode();
// Create DS18B20 device on the 1-Wire bus
if(found) {
attach();
}
}
bool
CTempSense::readTemperature(float& tempReading)
{
if(_TempSensor == NULL) {
bool found = find();
if(found) {
DebugPort.println("Found DS18B20 device");
readROMcode();
attach();
startConvert(); // request a new conversion,
waitConvertDone();
}
}
if(_TempSensor != NULL) {
DS18B20_ERROR error = ds18b20_read_temp(_TempSensor, &tempReading);
// DebugPort.printf(">>>> DS18B20 = %f, error=%d\r\n", fTemperature, error);
if(error == DS18B20_OK) {
return true;
}
else {
DebugPort.println("\007DS18B20 sensor removed?");
ds18b20_free(&_TempSensor);
}
}
return false;
}
bool
CTempSense::find()
{
// Find all connected devices
// DebugPort.printf("Finding one wire bus devices...");
OneWireBus_SearchState search_state = {0};
bool found = false;
owb_search_first(_owb, &search_state, &found);
if(found)
DebugPort.println("Found a one wire device");
else
DebugPort.println("No one wire devices found!!");
return found;
}
bool
CTempSense::readROMcode()
{
// For a single device only:
OneWireBus_ROMCode rom_code;
owb_status status = owb_read_rom(_owb, &rom_code);
if (status == OWB_STATUS_OK)
{
char rom_code_s[OWB_ROM_CODE_STRING_LENGTH];
owb_string_from_rom_code(rom_code, rom_code_s, sizeof(rom_code_s));
DebugPort.printf("Device %s present\r\n", rom_code_s);
return true;
}
else
{
DebugPort.printf("Error #%d occurred attempting to read ROM code\r\n", status);
return false;
}
}
bool
CTempSense::attach()
{
if(_TempSensor == NULL) {
_TempSensor = ds18b20_malloc(); // heap allocation
DebugPort.printf("Single device optimisations enabled\r\n");
ds18b20_init_solo(_TempSensor, _owb); // only one device on bus
ds18b20_use_crc(_TempSensor, true); // enable CRC check for temperature readings
ds18b20_set_resolution(_TempSensor, DS18B20_RESOLUTION_12_BIT);
}
return true;
}
void
CTempSense::startConvert()
{
// kick off the initial temperature conversion
if(_TempSensor)
ds18b20_convert(_TempSensor);
}
void
CTempSense::waitConvertDone()
{
if(_TempSensor)
ds18b20_wait_for_conversion(_TempSensor);
}