ESP32_ChinaDieselHeater_Con.../Arduino/BTCDieselHeater/src/Utility/NVStorage.cpp

478 lines
12 KiB
C++

/*
* This file is part of the "bluetoothheater" distribution
* (https://gitlab.com/mrjones.id.au/bluetoothheater)
*
* Copyright (C) 2018 Ray Jones <ray@mrjones.id.au>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include <Arduino.h>
#include "NVStorage.h"
#include "DebugPort.h"
bool u8inBounds(uint8_t test, uint8_t minLim, uint8_t maxLim);
bool s8inBounds(int8_t test, int8_t minLim, int8_t maxLim);
bool u8Match2(uint8_t test, uint8_t test1, uint8_t test2);
bool u16inBounds(uint16_t test, uint16_t minLim, uint16_t maxLim);
bool s32inBounds(long test, long minLim, long maxLim);
bool thermoMethodinBounds(uint8_t test, uint8_t minLim, uint8_t maxLim);
bool
sNVStore::valid()
{
bool retval = true;
retval &= (DimTime >= 0) && (DimTime < 300000); // 5 mins
retval &= (ThermostatMethod & 0x03) < 3; // only modes 0, 1 or 2
for(int i=0; i<2; i++) {
retval &= timer[i].valid();
}
retval &= Heater.valid();
return retval;
}
void
sNVStore::init()
{
for(int i=0; i<2; i++) {
timer[i].init();
}
DimTime = 60000; // 1 minute
ThermostatMethod = 10 << 2; // 1 degree hysteresis, normal thermostat
Heater.init();
}
CHeaterStorage::CHeaterStorage()
{
_calValues.Heater.init();
}
float
CHeaterStorage::getPmin()
{
return float(_calValues.Heater.Pmin) * 0.1f;
}
float
CHeaterStorage::getPmax()
{
return float(_calValues.Heater.Pmax) * 0.1f;
}
unsigned short
CHeaterStorage::getFmin()
{
return _calValues.Heater.Fmin;
}
unsigned short
CHeaterStorage::getFmax()
{
return _calValues.Heater.Fmax;
}
unsigned char
CHeaterStorage::getDesiredTemperature()
{
return _calValues.Heater.setTemperature;
}
unsigned char
CHeaterStorage::getThermostatMode()
{
return _calValues.Heater.ThermostatMode;
}
unsigned char
CHeaterStorage::getThermostatMethodMode()
{
return _calValues.ThermostatMethod & 0x03;
}
float
CHeaterStorage::getThermostatMethodHysteresis()
{
return float((_calValues.ThermostatMethod >> 2) & 0x3f) * 0.05f; // top 5 bits / 10, then / 2
}
void
CHeaterStorage::setPmin(float val)
{
uint8_t cVal = (uint8_t)(val * 10.f + 0.5f);
_calValues.Heater.Pmin = cVal;
}
void
CHeaterStorage::setPmax(float val)
{
uint8_t cVal = (uint8_t)(val * 10.f + 0.5f);
_calValues.Heater.Pmax = cVal;
}
void
CHeaterStorage::setFmin(unsigned short val)
{
_calValues.Heater.Fmin = val;
}
void
CHeaterStorage::setFmax(unsigned short val)
{
_calValues.Heater.Fmax = val;
}
void
CHeaterStorage::setDesiredTemperature(unsigned char val)
{
_calValues.Heater.setTemperature = val;
}
void
CHeaterStorage::setThermostatMode(unsigned char val)
{
_calValues.Heater.ThermostatMode = val;
}
void
CHeaterStorage::setThermostatMethodMode(unsigned char val)
{
_calValues.ThermostatMethod &= 0xF3;
_calValues.ThermostatMethod |= (val & 0x03);
}
void
CHeaterStorage::setThermostatMethodHysteresis(float val)
{
_calValues.ThermostatMethod &= 0x03;
int nVal = int(val * 10 + 0.5);
_calValues.ThermostatMethod |= ((nVal & 0x3F) << 2);
}
void
CHeaterStorage::setSystemVoltage(float fVal)
{
int val = int(fVal * 10.0);
if(val == 120 || val == 240) {
_calValues.Heater.sysVoltage = val;
}
}
unsigned char
CHeaterStorage::getSysVoltage()
{
return _calValues.Heater.sysVoltage;
}
void
CHeaterStorage::setFanSensor(unsigned char val)
{
if(val == 2)
_calValues.Heater.fanSensor = 2;
else
_calValues.Heater.fanSensor = 1;
}
unsigned char
CHeaterStorage::getFanSensor()
{
return _calValues.Heater.fanSensor;
}
void
CHeaterStorage::setGlowDrive(unsigned char val)
{
if(val >=1 && val <= 6)
_calValues.Heater.glowDrive = val;
else
_calValues.Heater.glowDrive = 5;
}
unsigned char
CHeaterStorage::getGlowDrive()
{
return _calValues.Heater.glowDrive;
}
void
CHeaterStorage::getTimerInfo(int idx, sTimer& timerInfo)
{
if(idx >= 0 && idx < 14) {
timerInfo = _calValues.timer[idx];
}
}
void
CHeaterStorage::setTimerInfo(int idx, const sTimer& timerInfo)
{
if(idx >= 0 && idx < 14) {
_calValues.timer[idx] = timerInfo;
}
}
unsigned long
CHeaterStorage::getDimTime()
{
return _calValues.DimTime;
}
void
CHeaterStorage::setDimTime(unsigned long val)
{
_calValues.DimTime = val;
}
unsigned char
CHeaterStorage::getDegFMode()
{
return _calValues.degF;
}
void
CHeaterStorage::setDegFMode(unsigned char val)
{
_calValues.degF = val;
save();
}
///////////////////////////////////////////////////////////////////////////////////////
// ESP32
//
#ifdef ESP32
CESP32HeaterStorage::CESP32HeaterStorage()
{
}
CESP32HeaterStorage::~CESP32HeaterStorage()
{
}
void
CESP32HeaterStorage::init()
{
}
void
CESP32HeaterStorage::load()
{
DebugPort.println("Reading from NV storage");
loadHeater();
for(int i=0; i<14; i++) {
loadTimer(i);
}
loadUI();
}
void
CESP32HeaterStorage::save()
{
DebugPort.println("Saving to NV storage");
saveHeater();
for(int i=0; i<14; i++) {
saveTimer(i);
}
saveUI();
}
void
CESP32HeaterStorage::loadHeater()
{
// section for heater calibration params
preferences.begin("Calibration", false);
validatedLoad("minPump", _calValues.Heater.Pmin, 14, u8inBounds, 4, 100);
validatedLoad("maxPump", _calValues.Heater.Pmax, 45, u8inBounds, 4, 150);
validatedLoad("minFan", _calValues.Heater.Fmin, 1500, u16inBounds, 100, 5000);
validatedLoad("maxFan", _calValues.Heater.Fmax, 4500, u16inBounds, 100, 6000);
validatedLoad("thermostat", _calValues.Heater.ThermostatMode, 1, u8inBounds, 0, 1);
validatedLoad("setTemperature", _calValues.Heater.setTemperature, 22, u8inBounds, 0, 40);
validatedLoad("systemVoltage", _calValues.Heater.sysVoltage, 120, u8Match2, 120, 240);
validatedLoad("fanSensor", _calValues.Heater.fanSensor, 1, u8inBounds, 1, 2);
validatedLoad("glowDrive", _calValues.Heater.glowDrive, 5, u8inBounds, 1, 6);
preferences.end();
}
void
CESP32HeaterStorage::saveHeater()
{
// section for heater calibration params
preferences.begin("Calibration", false);
preferences.putUChar("minPump", _calValues.Heater.Pmin);
preferences.putUChar("maxPump", _calValues.Heater.Pmax);
preferences.putUShort("minFan", _calValues.Heater.Fmin);
preferences.putUShort("maxFan", _calValues.Heater.Fmax);
preferences.putUChar("thermostat", _calValues.Heater.ThermostatMode);
preferences.putUChar("setTemperature", _calValues.Heater.setTemperature);
preferences.putUChar("systemVoltage", _calValues.Heater.sysVoltage);
preferences.putUChar("fanSensor", _calValues.Heater.fanSensor);
preferences.putUChar("glowDrive", _calValues.Heater.glowDrive);
preferences.end();
}
void
CESP32HeaterStorage::loadTimer(int idx)
{
sTimer& timer = _calValues.timer[idx];
timer.timerID = idx;
char SectionName[16];
sprintf(SectionName, "timer%d", idx+1);
preferences.begin(SectionName, false);
validatedLoad("startHour", timer.start.hour, 0, s8inBounds, 0, 23);
validatedLoad("startMin", timer.start.min, 0, s8inBounds, 0, 59);
validatedLoad("stopHour", timer.stop.hour, 0, s8inBounds, 0, 23);
validatedLoad("stopMin", timer.stop.min, 0, s8inBounds, 0, 59);
validatedLoad("enabled", timer.enabled, 0, u8inBounds, 0, 255); // all 8 bits used!
validatedLoad("repeat", timer.repeat, 0, u8inBounds, 0, 1);
validatedLoad("temperature", timer.temperature, 22, u8inBounds, 8, 35);
preferences.end();
}
void
CESP32HeaterStorage::saveTimer(int idx)
{
sTimer& timer = _calValues.timer[idx];
char SectionName[16];
sprintf(SectionName, "timer%d", idx+1);
preferences.begin(SectionName, false);
preferences.putChar("startHour", timer.start.hour);
preferences.putChar("startMin", timer.start.min);
preferences.putChar("stopHour", timer.stop.hour);
preferences.putChar("stopMin", timer.stop.min);
preferences.putUChar("enabled", timer.enabled);
preferences.putUChar("repeat", timer.repeat);
preferences.putUChar("temperature", timer.temperature);
preferences.end();
}
void
CESP32HeaterStorage::loadUI()
{
preferences.begin("user", false);
validatedLoad("dimTime", _calValues.DimTime, 60000, s32inBounds, 0, 600000);
validatedLoad("degF", _calValues.degF, 0, u8inBounds, 0, 1);
validatedLoad("thermoMethod", _calValues.ThermostatMethod, (10 << 2), u8inBounds, 0, 2, 0x03);
// validatedLoad("thermoMethod", _calValues.ThermostatMethod, (10 << 2) + 0, u8inBounds, 0, 2); // TESTO!!!!
preferences.end();
}
void
CESP32HeaterStorage::saveUI()
{
preferences.begin("user", false);
preferences.putULong("dimTime", _calValues.DimTime);
preferences.putUChar("degF", _calValues.degF);
preferences.putUChar("thermoMethod", _calValues.ThermostatMethod);
preferences.end();
}
bool
CESP32HeaterStorage::validatedLoad(const char* key, uint8_t& val, int defVal, std::function<bool(uint8_t, uint8_t, uint8_t)> validator, int min, int max, uint8_t mask)
{
val = preferences.getUChar(key, defVal);
if(!validator(val & mask, min, max)) {
DebugPort.print("CESP32HeaterStorage::validatedLoad<uint8_t> invalid read ");
DebugPort.print(key); DebugPort.print("="); DebugPort.print(val);
DebugPort.print(" validator("); DebugPort.print(min); DebugPort.print(","); DebugPort.print(max); DebugPort.print(") reset to ");
DebugPort.println(defVal);
val = defVal;
preferences.putUChar(key, val);
return false;
}
return true;
}
bool
CESP32HeaterStorage::validatedLoad(const char* key, int8_t& val, int defVal, std::function<bool(int8_t, int8_t, int8_t)> validator, int min, int max)
{
val = preferences.getChar(key, defVal);
if(!validator(val, min, max)) {
DebugPort.print("CESP32HeaterStorage::validatedLoad<uint8_t> invalid read ");
DebugPort.print(key); DebugPort.print("="); DebugPort.print(val);
DebugPort.print(" validator("); DebugPort.print(min); DebugPort.print(","); DebugPort.print(max); DebugPort.print(") reset to ");
DebugPort.println(defVal);
val = defVal;
preferences.putChar(key, val);
return false;
}
return true;
}
bool
CESP32HeaterStorage::validatedLoad(const char* key, uint16_t& val, int defVal, std::function<bool(uint16_t, uint16_t, uint16_t)> validator, int min, int max)
{
val = preferences.getUShort(key, defVal);
if(!validator(val, min, max)) {
DebugPort.print("CESP32HeaterStorage::validatedLoad<uint16_t> invalid read ");
DebugPort.print(key); DebugPort.print("="); DebugPort.print(val);
DebugPort.print(" validator("); DebugPort.print(min); DebugPort.print(","); DebugPort.print(max); DebugPort.print(") reset to ");
DebugPort.println(defVal);
val = defVal;
preferences.putUShort(key, val);
return false;
}
return true;
}
bool
CESP32HeaterStorage::validatedLoad(const char* key, long& val, long defVal, std::function<bool(long, long, long)> validator, long min, long max)
{
val = preferences.getLong(key, defVal);
if(!validator(val, min, max)) {
DebugPort.print("CESP32HeaterStorage::validatedLoad<long> invalid read ");
DebugPort.print(key); DebugPort.print("="); DebugPort.print(val);
DebugPort.print(" validator("); DebugPort.print(min); DebugPort.print(","); DebugPort.print(max); DebugPort.print(") reset to ");
DebugPort.println(defVal);
val = defVal;
preferences.putLong(key, val);
return false;
}
return true;
}
bool u8inBounds(uint8_t test, uint8_t minLim, uint8_t maxLim)
{
return (test >= minLim) && (test <= maxLim);
}
bool s8inBounds(int8_t test, int8_t minLim, int8_t maxLim)
{
return (test >= minLim) && (test <= maxLim);
}
bool u8Match2(uint8_t test, uint8_t test1, uint8_t test2)
{
return (test == test1) || (test == test2);
}
bool u16inBounds(uint16_t test, uint16_t minLim, uint16_t maxLim)
{
return (test >= minLim) && (test <= maxLim);
}
bool s32inBounds(long test, long minLim, long maxLim)
{
return (test >= minLim) && (test <= maxLim);
}
#endif // ESP32