/* * This file is part of the "bluetoothheater" distribution * (https://gitlab.com/mrjones.id.au/bluetoothheater) * * Copyright (C) 2018 Ray Jones * Copyright (C) 2018 James Clark * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /* Chinese Heater Half Duplex Serial Data Sending Tool Connects to the blue wire of a Chinese heater, which is the half duplex serial link. Sends and receives data from hardware serial port 1. Terminology: Tx is to the heater unit, Rx is from the heater unit. Typical data frame timing on the blue wire is: __Tx_Rx____________________________Tx_Rx____________________________Tx_Rx___________ This software can connect to the blue wire in a normal OEM system, detecting the OEM controller and allowing extraction of the data or injecting on/off commands. If Pin 21 is grounded on the Due, this simple stream will be reported over Serial and no control from the Arduino will be allowed. This allows passive sniffing of the blue wire in a normal system. The binary data is received from the line. If it has been > 100ms since the last blue wire activity this indicates a new frame sequence is starting from the OEM controller. Synchronise as such then count off the next 24 bytes storing them in the Controller's data array. These bytes are then reported over Serial to the PC in ASCII. It is then expected the heater will respond with it's 24 bytes. Capture those bytes and store them in the Heater1 data array. Once again these bytes are then reported over Serial to the PC in ASCII. If no activity is sensed in a second, it is assumed no OEM controller is attached and we have full control over the heater. Either way we can now inject a message onto the blue wire allowing our custom on/off control. We must remain synchronous with an OEM controller if it exists otherwise E-07 faults will be caused. Typical data frame timing on the blue wire is then: __OEMTx_HtrRx__OurTx_HtrRx____________OEMTx_HtrRx__OurTx_HtrRx____________OEMTx_HtrRx__OurTx_HtrRx_________ The second HtrRx to the next OEMTx delay is always > 100ms and is paced by the OEM controller. The delay before seeing Heater Rx data after any Tx is usually much less than 10ms. But this does rise if new max/min or voltage settings are sent. **The heater only ever sends Rx data in response to a data frame from a controller** For Bluetooth connectivity, a HC-05 Bluetooth module is attached to Serial2: TXD -> Rx2 (pin 17) RXD -> Tx2 (pin 16) EN(key) -> pin 15 STATE -> pin 4 This code only works with boards that have more than one hardware serial port like Arduino Mega, Due, Zero, ESP32 etc. The circuit: - a Tx Rx multiplexer is required to combine the Arduino's Tx1 And Rx1 pins onto the blue wire. - a Tx Enable signal from pin 22 controls the multiplexer, high for Tx, low for Rx - Serial logging software on Serial0 via USB link created 23 Sep 2018 by Ray Jones This example code is in the public domain. */ #include "src/WiFi/ABMqtt.h" #include #include #include "src/cfg/BTCConfig.h" #include "src/cfg/pins.h" #include "src/RTC/Timers.h" #include "src/RTC/Clock.h" #include "src/Wifi/BTCWebServer.h" #include "src/Wifi/BTCota.h" #include "src/Protocol/Protocol.h" #include "src/Protocol/TxManage.h" #include "src/Protocol/SmartError.h" #include "src/Protocol/helpers.h" #include "src/Utility/NVStorage.h" #include "src/Utility/DebugPort.h" #include "src/Utility/UtilClasses.h" #include "src/Utility/BTC_JSON.h" #include "src/Utility/GPIO.h" #include "src/Utility/BoardDetect.h" #include "src/OLED/ScreenManager.h" #include "src/OLED/keypad.h" #include #if USE_SPIFFS == 1 #include #endif #define AP_SSID "Afterburner" #define AP_PASSWORD "thereisnospoon" #define RX_DATA_TIMOUT 50 const int FirmwareRevision = 23; const int FirmwareSubRevision = 0; const char* FirmwareDate = "12 May 2019"; #ifdef ESP32 #include "src/Bluetooth/BluetoothESP32.h" #else #include "src/Bluetooth/BluetoothHC05.h" #endif // Setup Serial Port Definitions #if defined(__arm__) // Required for Arduino Due, UARTclass is derived from HardwareSerial static UARTClass& BlueWireSerial(Serial1); #else // for ESP32, Mega // HardwareSerial is it for these boards static HardwareSerial& BlueWireSerial(Serial1); #endif void initBlueWireSerial(); bool validateFrame(const CProtocol& frame, const char* name); void checkDisplayUpdate(); void checkDebugCommands(); void manageCyclicMode(); // DS18B20 temperature sensor support OneWire ds(15); // on pin 5 (a 4.7K resistor is necessary) DallasTemperature TempSensor(&ds); DeviceAddress tempSensorAddress; long lastTemperatureTime; // used to moderate DS18B20 access float fFilteredTemperature = -100; // -100: force direct update uopn first pass const float fAlpha = 0.95; // exponential mean alpha int DS18B20holdoff = 2; int BoardRevision = 0; unsigned long lastAnimationTime; // used to sequence updates to LCD for animation CommStates CommState; CTxManage TxManage(TxEnbPin, BlueWireSerial); CModeratedFrame OEMCtrlFrame; // data packet received from heater in response to OEM controller packet CModeratedFrame HeaterFrame1; // data packet received from heater in response to OEM controller packet CProtocol HeaterFrame2; // data packet received from heater in response to our packet CProtocol DefaultBTCParams(CProtocol::CtrlMode); // defines the default parameters, used in case of no OEM controller CSmartError SmartError; CKeyPad KeyPad; CScreenManager ScreenManager; TelnetSpy DebugPort; CGPIOin GPIOin; CGPIOout GPIOout; CGPIOalg GPIOalg; sRxLine PCline; long lastRxTime; // used to observe inter character delays bool bHasOEMController = false; bool bHasOEMLCDController = false; bool bHasHtrData = false; bool bUserON = false; bool bReportBlueWireData = REPORT_RAW_DATA; bool bReportJSONData = REPORT_JSON_TRANSMIT; bool bReportRecyleEvents = REPORT_BLUEWIRE_RECYCLES; bool bReportOEMresync = REPORT_OEM_RESYNC; CProtocolPackage reportHeaterData; CProtocolPackage primaryHeaterData; unsigned long moderator; bool bUpdateDisplay = false; bool bHaveWebClient = false; bool bBTconnected = false; //////////////////////////////////////////////////////////////////////////////////////////////////////// // Bluetooth instantiation // #ifdef ESP32 // Bluetooth options for ESP32 #if USE_HC05_BLUETOOTH == 1 CBluetoothESP32HC05 Bluetooth(HC05_KeyPin, HC05_SensePin, Rx2Pin, Tx2Pin); // Instantiate ESP32 using a HC-05 #elif USE_BLE_BLUETOOTH == 1 CBluetoothESP32BLE Bluetooth; // Instantiate ESP32 BLE server #elif USE_CLASSIC_BLUETOOTH == 1 CBluetoothESP32Classic Bluetooth; // Instantiate ESP32 Classic Bluetooth server #else // none selected CBluetoothAbstract Bluetooth; // default no bluetooth support - empty shell #endif #else // !ESP32 // Bluetooth for boards other than ESP32 #if USE_HC05_BLUETOOTH == 1 CBluetoothHC05 Bluetooth(HC05_KeyPin, HC05_SensePin); // Instantiate a HC-05 #else // none selected CBluetoothAbstract Bluetooth; // default no bluetooth support - empty shell #endif // closing USE_HC05_BLUETOOTH #endif // closing ESP32 // // END Bluetooth instantiation //////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////// // setup Non Volatile storage // this is very much hardware dependent, we can use the ESP32's FLASH // #ifdef ESP32 CESP32HeaterStorage actualNVstore; #else CHeaterStorage actualNVstore; // dummy, for now #endif // create reference to CHeaterStorage // via the magic of polymorphism we can use this to access whatever // storage is required for a specific platform in a uniform way CHeaterStorage& NVstore = actualNVstore; // //////////////////////////////////////////////////////////////////////////////////////////////////////// CBluetoothAbstract& getBluetoothClient() { return Bluetooth; } // callback function for Keypad events. // must be an absolute function, cannot be a class member due the "this" element! void parentKeyHandler(uint8_t event) { ScreenManager.keyHandler(event); // call into the Screen Manager } const char* print18B20Address(DeviceAddress deviceAddress) { static char addrStr[32]; addrStr[0] = 0; for (uint8_t i = 0; i < 8; i++) { char subset[8]; sprintf(subset, "%02X%c", deviceAddress[i], i<7 ? ':' : ' '); strcat(addrStr, subset); } return addrStr; } #if USE_SPIFFS == 1 void listDir(fs::FS &fs, const char * dirname, uint8_t levels) { DebugPort.printf("Listing directory: %s\r\n", dirname); File root = fs.open(dirname); if (!root) { DebugPort.println("Failed to open directory"); return; } if (!root.isDirectory()) { DebugPort.println("Not a directory"); return; } File file = root.openNextFile(); while (file) { if (file.isDirectory()) { DebugPort.printf(" DIR : %s\r\n", file.name()); if (levels) { listDir(fs, file.name(), levels - 1); } } else { DebugPort.printf(" FILE: %s SIZE: %ld\r\n", file.name(), file.size()); } file = root.openNextFile(); } } #endif void setup() { char msg[128]; TempSensor.begin(); // initialise TelnetSpy (port 23) as well as Serial to 115200 // Serial is the usual USB connection to a PC // DO THIS BEFORE WE TRY AND SEND DEBUG INFO! DebugPort.setWelcomeMsg("*************************************************\r\n" "* Connected to BTC heater controller debug port *\r\n" "*************************************************\r\n"); DebugPort.setBufferSize(8192); DebugPort.begin(115200); DebugPort.println("_______________________________________________________________"); DebugPort.println("DS18B20 status dump"); DebugPort.printf(" Temperature for device#1 (idx 0) is: %.1f\r\n", TempSensor.getTempCByIndex(0)); BoardRevision = BoardDetect(); DebugPort.printf("Board revision: V%.1f\r\n", float(BoardRevision) * 0.1); #if USE_SPIFFS == 1 // Initialize SPIFFS if(!SPIFFS.begin(true)){ DebugPort.println("An Error has occurred while mounting SPIFFS"); } else { DebugPort.println("Mounted SPIFFS OK"); listDir(SPIFFS, "/", 2); } #endif // locate devices on the bus DebugPort.print("Locating DS18B20 devices..."); // initialise DS18B20 temperature sensor(s) // Grab a count of devices on the wire int numberOfDevices = TempSensor.getDeviceCount(); DebugPort.printf(" Found %d devices\r\n", numberOfDevices); // report parasite power requirements DebugPort.printf(" Parasite power is: %s\r\n", TempSensor.isParasitePowerMode() ? "ON" : "OFF"); // Loop through each device, print out address for(int i=0;i RX_DATA_TIMOUT) { if( CommState.is(CommStates::OEMCtrlRx) || CommState.is(CommStates::HeaterRx1) || CommState.is(CommStates::HeaterRx2) ) { if(RxTimeElapsed >= moderator) { moderator += 10; if(bReportRecyleEvents) { DebugPort.printf("%ldms - ", RxTimeElapsed); } if(CommState.is(CommStates::OEMCtrlRx)) { bHasOEMController = false; bHasOEMLCDController = false; if(bReportRecyleEvents) DebugPort.println("Timeout collecting OEM controller data, returning to Idle State"); } else if(CommState.is(CommStates::HeaterRx1)) { bHasHtrData = false; if(bReportRecyleEvents) DebugPort.println("Timeout collecting OEM heater response data, returning to Idle State"); } else { bHasHtrData = false; if(bReportRecyleEvents) DebugPort.println("Timeout collecting BTC heater response data, returning to Idle State"); } } if(bReportRecyleEvents) DebugPort.println("Recycling blue wire serial interface"); initBlueWireSerial(); CommState.set(CommStates::TemperatureRead); // revert to idle mode, after passing thru temperature mode } } /////////////////////////////////////////////////////////////////////////////////////////// // do our state machine to track the reception and delivery of blue wire data long tDelta; switch(CommState.get()) { case CommStates::Idle: moderator = 50; #if RX_LED == 1 digitalWrite(LED_Pin, LOW); #endif // Detect the possible start of a new frame sequence from an OEM controller // This will be the first activity for considerable period on the blue wire // The heater always responds to a controller frame, but otherwise never by itself if(RxTimeElapsed >= (NVstore.getFrameRate() - 60)) { // compensate for the time spent just doing things in this state machine // have not seen any receive data for a second. // OEM controller is probably not connected. // Skip state machine immediately to BTC_Tx, sending our own settings. bHasHtrData = false; bHasOEMController = false; bHasOEMLCDController = false; bool isBTCmaster = true; TxManage.PrepareFrame(DefaultBTCParams, isBTCmaster); // use our parameters, and mix in NV storage values TxManage.Start(timenow); CommState.set(CommStates::BTC_Tx); break; } #if SUPPORT_OEM_CONTROLLER == 1 if(BlueWireData.available() && (RxTimeElapsed > RX_DATA_TIMOUT+10)) { if(bReportOEMresync) { DebugPort.printf("Re-sync'd with OEM Controller. %ldms Idle time.\r\n", RxTimeElapsed); } bHasHtrData = false; bHasOEMController = true; CommState.set(CommStates::OEMCtrlRx); // we must add this new byte! // // ** IMPORTANT - we must drop through to OEMCtrlRx *NOW* (skipping break) ** // ** otherwise the first byte will be lost! ** // } else { Clock.update(); checkDisplayUpdate(); break; // only break if we fail all Idle state tests } #else Clock.update(); checkDisplayUpdate(); break; #endif case CommStates::OEMCtrlRx: #if RX_LED == 1 digitalWrite(LED_Pin, HIGH); #endif // collect OEM controller frame if(BlueWireData.available()) { if(CommState.collectData(OEMCtrlFrame, BlueWireData.getValue()) ) { CommState.set(CommStates::OEMCtrlValidate); // collected 24 bytes, move on! } } break; case CommStates::OEMCtrlValidate: #if RX_LED == 1 digitalWrite(LED_Pin, LOW); #endif // test for valid CRC, abort and restarts Serial1 if invalid if(!validateFrame(OEMCtrlFrame, "OEM")) { break; } // filled OEM controller frame OEMCtrlFrame.setTime(); // LCD controllers use 0x76 as first byte, rotary knobs use 0x78 bHasOEMLCDController = (OEMCtrlFrame.Controller.Byte0 != 0x78); CommState.set(CommStates::HeaterRx1); break; case CommStates::HeaterRx1: #if RX_LED == 1 digitalWrite(LED_Pin, HIGH); #endif // collect heater frame, always in response to an OEM controller frame if(BlueWireData.available()) { if( CommState.collectData(HeaterFrame1, BlueWireData.getValue()) ) { CommState.set(CommStates::HeaterValidate1); } } break; case CommStates::HeaterValidate1: #if RX_LED == 1 digitalWrite(LED_Pin, LOW); #endif // test for valid CRC, abort and restarts Serial1 if invalid if(!validateFrame(HeaterFrame1, "RX1")) { bHasHtrData = false; break; } bHasHtrData = true; // received heater frame (after controller message), report // do some monitoring of the heater state variable // if abnormal transitions, introduce a smart error! // This routine also cancels ON/OFF requests if runstate in startup/shutdown periods SmartError.monitor(HeaterFrame1); HeaterFrame1.setTime(); while(BlueWireSerial.available()) { DebugPort.println("DUMPED ROGUE RX DATA"); BlueWireSerial.read(); } BlueWireSerial.flush(); primaryHeaterData.set(HeaterFrame1, OEMCtrlFrame); // OEM is always *the* controller if(bReportBlueWireData) { primaryHeaterData.reportFrames(true); CommState.setDelay(20); // let serial get sent before we send blue wire } else { CommState.setDelay(0); } CommState.set(CommStates::HeaterReport1); break; case CommStates::HeaterReport1: if(CommState.delayExpired()) { /* if(digitalRead(ListenOnlyPin)) { // pin open, pulled high (STANDARD OPERATION)*/ bool isBTCmaster = false; TxManage.PrepareFrame(OEMCtrlFrame, isBTCmaster); // parrot OEM parameters, but block NV modes TxManage.Start(timenow); CommState.set(CommStates::BTC_Tx); /* } else { // pin shorted to ground CommState.set(CommStates::TemperatureRead); // "Listen Only" input is held low, don't send our Tx }*/ } break; case CommStates::BTC_Tx: // Handle time interval where we send data to the blue wire lastRxTime = timenow; // *we* are pumping onto blue wire, track this activity! if(TxManage.CheckTx(timenow) ) { // monitor progress of our data delivery CommState.set(CommStates::HeaterRx2); // then await heater repsonse } break; case CommStates::HeaterRx2: #if RX_LED == 1 digitalWrite(LED_Pin, HIGH); #endif // collect heater frame, in response to our control frame if(BlueWireData.available()) { #ifdef BADSTARTCHECK if(!CommState.checkValidStart(BlueWireData.getValue())) { DebugPort.println("***** Invalid start of frame - restarting Serial port *****"); initBlueWireSerial(); CommState.set(CommStates::Idle); } else { if( CommState.collectData(HeaterFrame2, BlueWireData.getValue()) ) { CommState.set(CommStates::HeaterValidate2); } } #else if( CommState.collectData(HeaterFrame2, BlueWireData.getValue()) ) { CommState.set(CommStates::HeaterValidate2); } #endif } break; case CommStates::HeaterValidate2: #if RX_LED == 1 digitalWrite(LED_Pin, LOW); #endif // test for valid CRC, abort and restart Serial1 if invalid if(!validateFrame(HeaterFrame2, "RX2")) { bHasHtrData = false; break; } bHasHtrData = true; // received heater frame (after our control message), report // do some monitoring of the heater state variables // if abnormal transitions, introduce a smart error! SmartError.monitor(HeaterFrame2); if(!bHasOEMController) // no OEM controller - BTC is *the* controller primaryHeaterData.set(HeaterFrame2, TxManage.getFrame()); if(bReportBlueWireData) { reportHeaterData.set(HeaterFrame2, TxManage.getFrame()); reportHeaterData.reportFrames(false); CommState.setDelay(20); // let serial get sent before we send blue wire } else { CommState.setDelay(0); } CommState.set(CommStates::HeaterReport2); break; case CommStates::HeaterReport2: if(CommState.delayExpired()) { CommState.set(CommStates::TemperatureRead); } break; case CommStates::TemperatureRead: // update temperature reading, // synchronised with serial reception as interrupts do get disabled in the OneWire library tDelta = timenow - lastTemperatureTime; if(tDelta > TEMPERATURE_INTERVAL) { // maintain a minimum holdoff period lastTemperatureTime += TEMPERATURE_INTERVAL; // reset time to observe temeprature fTemperature = TempSensor.getTempC(tempSensorAddress); // read sensor // DebugPort.printf("DS18B20 = %f\r\n", fTemperature); // initialise filtered temperature upon very first pass if(fTemperature > -80) { // avoid disconnected sensor readings being integrated if(DS18B20holdoff) DS18B20holdoff--; // first value upon sensor connect is bad else { if(fFilteredTemperature < -90) { // avoid FP exactness issues - starts as -100 on boot fFilteredTemperature = fTemperature; // prime with first *valid* reading } // exponential mean to stabilse readings fFilteredTemperature = fFilteredTemperature * fAlpha + (1-fAlpha) * fTemperature; manageCyclicMode(); } } else { DS18B20holdoff = 2; fFilteredTemperature = -100; } TempSensor.requestTemperatures(); // prep sensor for future reading ScreenManager.reqUpdate(); } updateJSONclients(bReportJSONData); CommState.set(CommStates::Idle); break; } // switch(CommState) BlueWireData.reset(); // ensure we flush any used data } // loop void DebugReportFrame(const char* hdr, const CProtocol& Frame, const char* ftr) { DebugPort.print(hdr); // header for(int i=0; i<24; i++) { char str[16]; sprintf(str, " %02X", Frame.Data[i]); // build 2 dig hex values DebugPort.print(str); // and print } DebugPort.print(ftr); // footer } void manageCyclicMode() { const sCyclicThermostat& cyclic = NVstore.getCyclicMode(); if(cyclic.Stop && bUserON) { // cyclic mode enabled, and user has started heater int stopDeltaT = cyclic.Stop + 1; // bump up by 1 degree - no point invoking at 1 deg over! float deltaT = fFilteredTemperature - getSetTemp(); // DebugPort.printf("Cyclic=%d bUserOn=%d deltaT=%d\r\n", cyclic, bUserON, deltaT); // ensure we cancel user ON mode if heater throws an error int errState = getHeaterInfo().getErrState(); if(errState > 1 && errState < 12) { // excludes errors 0,1(OK) & 12(Retry) DebugPort.println("CYCLIC MODE: cancelling user ON status"); requestOff(); // forcibly cancel cyclic operation - pretend user pressed OFF } int heaterState = getHeaterInfo().getRunState(); // check if over temp, turn off heater if(deltaT > stopDeltaT) { if(heaterState > 0 && heaterState <= 5) { DebugPort.printf("CYCLIC MODE: Stopping heater, deltaT > +%d\r\n", stopDeltaT); heaterOff(); // over temp - request heater stop } } // check if under temp, turn on heater if(deltaT < cyclic.Start) { // typ. 1 degree below set point - restart heater if(heaterState == 0) { DebugPort.printf("CYCLIC MODE: Restarting heater, deltaT <%d\r\n", cyclic.Start); heaterOn(); } } } } void initBlueWireSerial() { // initialize serial port to interact with the "blue wire" // 25000 baud, Tx and Rx channels of Chinese heater comms interface: // Tx/Rx data to/from heater, // Note special baud rate for Chinese heater controllers #if defined(__arm__) || defined(__AVR__) BlueWireSerial.begin(25000); pinMode(Rx1Pin, INPUT_PULLUP); // required for MUX to work properly #elif ESP32 // ESP32 BlueWireSerial.begin(25000, SERIAL_8N1, Rx1Pin, Tx1Pin); // need to explicitly specify pins for pin multiplexer! pinMode(Rx1Pin, INPUT_PULLUP); // required for MUX to work properly #endif } bool validateFrame(const CProtocol& frame, const char* name) { if(!frame.verifyCRC()) { // Bad CRC - restart blue wire Serial port DebugPort.printf("\007Bad CRC detected for %s frame - restarting blue wire's serial port\r\n", name); DebugReportFrame("BAD CRC:", frame, "\r\n"); initBlueWireSerial(); CommState.set(CommStates::TemperatureRead); return false; } return true; } void requestOn() { heaterOn(); bUserON = true; // for cyclic mode } void requestOff() { heaterOff(); bUserON = false; // for cyclic mode } void heaterOn() { TxManage.queueOnRequest(); SmartError.reset(); } void heaterOff() { TxManage.queueOffRequest(); SmartError.inhibit(); } void ToggleOnOff() { if(primaryHeaterData.getRunState()) { DebugPort.println("ToggleOnOff: Heater OFF"); requestOff(); } else { DebugPort.println("ToggleOnOff: Heater ON"); requestOn(); } } bool reqTemp(unsigned char newTemp) { if(bHasOEMController) return false; unsigned char max = DefaultBTCParams.getTemperature_Max(); unsigned char min = DefaultBTCParams.getTemperature_Min(); if(newTemp >= max) newTemp = max; if(newTemp <= min) newTemp = min; NVstore.setDesiredTemperature(newTemp); ScreenManager.reqUpdate(); return true; } bool reqTempDelta(int delta) { unsigned char newTemp = getSetTemp() + delta; return reqTemp(newTemp); } int getSetTemp() { return NVstore.getDesiredTemperature(); } bool reqThermoToggle() { return setThermostatMode(getThermostatModeActive() ? 0 : 1); } bool setThermostatMode(unsigned char val) { if(bHasOEMController) return false; NVstore.setThermostatMode(val); return true; } bool getThermostatModeActive() { if(bHasOEMController) { return getHeaterInfo().isThermostat(); } else { return NVstore.getThermostatMode() != 0; } } void checkDisplayUpdate() { // only update OLED when not processing blue wire if(ScreenManager.checkUpdate()) { lastAnimationTime = millis() + 100; ScreenManager.animate(); ScreenManager.refresh(); // always refresh post major update } long tDelta = millis() - lastAnimationTime; if(tDelta >= 100) { lastAnimationTime = millis() + 100; if(ScreenManager.animate()) ScreenManager.refresh(); } } void reqPumpPrime(bool on) { DefaultBTCParams.setPump_Prime(on); } float getTemperatureDesired() { if(bHasOEMController) { return getHeaterInfo().getTemperature_Desired(); } else { return NVstore.getDesiredTemperature(); } } float getTemperatureSensor() { return fFilteredTemperature; } void setPumpMin(float val) { NVstore.setPmin(val); } void setPumpMax(float val) { NVstore.setPmax(val); } void setFanMin(short cVal) { NVstore.setFmin(cVal); } void setFanMax(short cVal) { NVstore.setFmax(cVal); } void setFanSensor(unsigned char cVal) { NVstore.setFanSensor(cVal); } void setSystemVoltage(float val) { NVstore.setSystemVoltage(val); } void setGlowDrive(unsigned char val) { NVstore.setGlowDrive(val); } void saveNV() { NVstore.save(); } const CProtocolPackage& getHeaterInfo() { return primaryHeaterData; } bool isWebClientConnected() { return bHaveWebClient; } void checkDebugCommands() { // check for test commands received from PC Over USB if(DebugPort.available()) { static int mode = 0; static int val = 0; char rxVal = DebugPort.read(); rxVal = toLowerCase(rxVal); #ifdef PROTOCOL_INVESTIGATION bool bSendVal = false; #endif if(rxVal == '\n') { // "End of Line" #ifdef PROTOCOL_INVESTIGATION String convert(PCline.Line); val = convert.toInt(); bSendVal = true; PCline.clear(); #endif } else { if(rxVal == ' ') { // SPACE to bring up menu DebugPort.print("\014"); DebugPort.println("MENU options"); DebugPort.println(""); DebugPort.printf(" - toggle raw blue wire data reporting, currently %s\r\n", bReportBlueWireData ? "ON" : "OFF"); DebugPort.printf(" - toggle output JSON reporting, currently %s\r\n", bReportJSONData ? "ON" : "OFF"); DebugPort.printf(" - toggle reporting of blue wire timeout/recycling event, currently %s\r\n", bReportRecyleEvents ? "ON" : "OFF"); DebugPort.printf(" - toggle reporting of OEM resync event, currently %s\r\n", bReportOEMresync ? "ON" : "OFF"); DebugPort.printf(" - toggle reporting of state machine transits %s\r\n", CommState.isReporting() ? "ON" : "OFF"); DebugPort.println(" <+> - request heater turns ON"); DebugPort.println(" <-> - request heater turns OFF"); DebugPort.println(" - restart the ESP"); DebugPort.println(""); DebugPort.println(""); DebugPort.println(""); DebugPort.println(""); DebugPort.println(""); DebugPort.println(""); DebugPort.println(""); } #ifdef PROTOCOL_INVESTIGATION else if(isDigit(rxVal)) { PCline.append(rxVal); } else if(rxVal == 'p') { DebugPort.println("Test Priming Byte... "); mode = 1; } else if(rxVal == 'g') { DebugPort.println("Test glow power byte... "); mode = 2; } else if(rxVal == 'i') { DebugPort.println("Test fan bytes"); mode = 3; } else if(rxVal == 'c') { DebugPort.println("Test Command Byte... "); mode = 4; } else if(rxVal == 'x') { DebugPort.println("Special mode cancelled"); val = 0; mode = 0; DefaultBTCParams.Controller.Command = 0; } else if(rxVal == ']') { val++; bSendVal = true; } else if(rxVal == '[') { val--; bSendVal = true; } #endif else if(rxVal == 'b') { bReportBlueWireData = !bReportBlueWireData; DebugPort.printf("Toggled raw blue wire data reporting %s\r\n", bReportBlueWireData ? "ON" : "OFF"); } else if(rxVal == 'j') { bReportJSONData = !bReportJSONData; DebugPort.printf("Toggled JSON data reporting %s\r\n", bReportJSONData ? "ON" : "OFF"); } else if(rxVal == 'w') { bReportRecyleEvents = !bReportRecyleEvents; DebugPort.printf("Toggled blue wire recycling event reporting %s\r\n", bReportRecyleEvents ? "ON" : "OFF"); } else if(rxVal == 'o') { bReportOEMresync = !bReportOEMresync; DebugPort.printf("Toggled OEM resync event reporting %s\r\n", bReportOEMresync ? "ON" : "OFF"); } else if(rxVal == 's') { CommState.toggleReporting(); } else if(rxVal == '+') { TxManage.queueOnRequest(); // HeaterData.setRefTime(); } else if(rxVal == '-') { TxManage.queueOffRequest(); // HeaterData.setRefTime(); } else if(rxVal == 'r') { ESP.restart(); // reset the esp } } #ifdef PROTOCOL_INVESTIGATION if(bSendVal) { switch(mode) { case 1: DefaultBTCParams.Controller.Prime = val & 0xff; // always 0x32:Thermostat, 0xCD:Fixed break; case 2: DefaultBTCParams.Controller.GlowDrive = val & 0xff; // always 0x05 break; case 3: DefaultBTCParams.Controller.Unknown2_MSB = (val >> 8) & 0xff; // always 0x0d DefaultBTCParams.Controller.Unknown2_LSB = (val >> 0) & 0xff; // always 0xac 16bit: "3500" ?? Ignition fan max RPM???? break; case 4: DebugPort.printf("Forced controller command = %d\r\n", val&0xff); DefaultBTCParams.Controller.Command = val & 0xff; break; } } #endif } } // 0x00 - Normal: BTC, with heater responding // 0x01 - Error: BTC, heater not responding // 0x02 - Special: OEM controller & heater responding // 0x03 - Error: OEM controller, heater not responding int getBlueWireStat() { int stat = 0; if(!bHasHtrData) { stat |= 0x01; } if(bHasOEMController) { stat |= 0x02; } return stat; } const char* getBlueWireStatStr() { static const char* BlueWireStates[] = { "BTC,Htr", "BTC", "OEM,Htr", "OEM" }; return BlueWireStates[getBlueWireStat()]; } bool hasOEMcontroller() { return bHasOEMController; } bool hasOEMLCDcontroller() { return bHasOEMLCDController; } int getSmartError() { return SmartError.getError(); } bool isCyclicActive() { return bUserON && NVstore.getCyclicMode().isEnabled(); } void setupGPIO() { if(BoardRevision) { // some special considerations for GPIO inputs, depending upon PCB hardware // V1.0 PCBs only expose bare inputs, which are pulled high. Active state into ESP32 is LOW. // V2.0+ PCBs use an input transistor buffer. Active state into ESP32 is HIGH (inverted). int activePinState = (BoardRevision == 10) ? LOW : HIGH; int Input1 = BoardRevision == 20 ? GPIOin1_pinV20 : GPIOin1_pinV21V10; GPIOin.begin(Input1, GPIOin2_pin, NVstore.getGPIOinMode(), activePinState); // GPIO out is always active high from ESP32 // V1.0 PCBs only expose the bare pins // V2.0+ PCBs provide an open collector output that conducts when active GPIOout.begin(GPIOout1_pin, GPIOout2_pin, NVstore.getGPIOoutMode()); // ### MAJOR ISSUE WITH ADC INPUTS ### // // V2.0 PCBs that have not been modified connect the analogue input to GPIO26. // This is ADC2 channel (#9). // Unfortunately it was subsequently discovered that any ADC2 input cannot be // used if Wifi is enabled. // THIS ISSUE IS NOT RESOLBVABLE IN SOFTWARE. // *** It is not possible to use ANY of the 10 ADC2 channels if Wifi is enabled :-( *** // // Fix is to cut traces to GPIO33 & GPIO26 and swap the connections. // This directs GPIO input1 into GPIO26 and the analogue input into GPIO33 (ADC1_CHANNEL_5) // This will be properly fixed in V2.1 PCBs // // As V1.0 PCBS expose the bare pins, the correct GPIO33 input can be readily chosen. GPIOalgModes algMode = NVstore.getGPIOalgMode(); if(BoardRevision == 20) algMode = GPIOalgNone; // force off analogue support in V2.0 PCBs GPIOalg.begin(GPIOalg_pin, algMode); } else { // unknown board - deny all GPIO operation (unlikely) GPIOin.begin(0, 0, GPIOinNone, LOW); GPIOout.begin(0, 0, GPIOoutNone); GPIOalg.begin(ADC1_CHANNEL_5, GPIOalgNone); } } void setGPIO(int channel, bool state) { DebugPort.printf("setGPIO: Output #%d = %d\r\n", channel+1, state); GPIOout.setState(channel, state); } bool getGPIO(int channel) { bool retval = GPIOout.getState(channel); DebugPort.printf("getGPIO: Output #%d = %d\r\n", channel+1, retval); return retval; } float getVersion() { return float(FirmwareRevision) * 0.1f + float(FirmwareSubRevision) * .001f; } const char* getVersionStr() { static char vStr[32]; sprintf(vStr, "V%.1f.%d", float(FirmwareRevision) * 0.1f, FirmwareSubRevision); return vStr; } const char* getVersionDate() { return FirmwareDate; } int getBoardRevision() { return BoardRevision; } void ShowOTAScreen(int percent) { ScreenManager.showOTAMessage(percent); }