ESP32_ChinaDieselHeater_Con.../Arduino/SenderTrial2/SenderTrial2.ino

300 lines
9.3 KiB
Arduino
Raw Normal View History

/*
2018-09-23 08:59:19 +00:00
Chinese Heater Half Duplex Serial Data Sending Tool
Connects to the blue wire of a Chinese heater, which is the half duplex serial link.
2018-09-23 08:59:19 +00:00
Sends and receives data from serial port 1.
Terminology: Tx is to the heater unit, Rx is from the heater unit.
2018-09-23 08:59:19 +00:00
Typical data frame timing on the blue wire is:
__Tx_Rx____________________________Tx_Rx____________________________Tx_Rx___________
This software can connect to the blue wire in a normal OEM system, detecting the
OEM controller and allowing extraction of the data or injecting on/off commands.
If Pin 21 is grounded on the Due, this simple stream will be reported over USB and
no control from the Arduino will be allowed.
This allows sniffing of the blue wire in a normal system.
2018-09-23 08:59:19 +00:00
The binary data is received from the line.
2018-09-23 08:59:19 +00:00
If it has been > 100ms since the last blue wire activity this indicates a new frame
sequence is starting from the OEM controller.
Synchronise as such then count off the next 24 bytes storing them in the Controller's
data array. These bytes are then reported over USB to the PC in ASCII.
It is then expected the heater will respond with it's 24 bytes.
2018-09-23 08:59:19 +00:00
Capture those bytes and store them in the Heater1 data array.
Once again these bytes are then reported over USB to the PC in ASCII.
2018-09-23 08:59:19 +00:00
If no activity is sensed in a second, it is assumed no controller is attached and we
have full control over the heater.
Either way we can now inject a message onto the blue wire allowing our custom
on/off control.
We must remain synchronous with the OEM controller if it exists otherwise E-07
faults will be caused.
Typical data frame timing on the blue wire is then:
__OEMTx_HtrRx__OurTx_HtrRx____________OEMTx_HtrRx__OurTx_HtrRx____________OEMTx_HtrRx__OurTx_HtrRx_________
2018-09-23 08:59:19 +00:00
The second HtrRx to the next OEMTx delay is always > 100ms and is paced by the OEM controller.
The delay before seeing Heater Rx data after any Tx is usually much less than 10ms.
But this does rise if new max/min or voltage settings are sent.
**The heater only ever sends Rx data in response to a data frame from a controller**
A HC-05 Bluetooth module is attached to Serial2:
TXD -> Rx2 (pin 17)
RXD -> Tx2 (pin 16)
EN(key) -> pin 15
2018-09-23 08:59:19 +00:00
This code only works with boards that have more than one hardware serial port like Arduino
Mega, Due, Zero etc.
2018-09-23 08:59:19 +00:00
The circuit:
- a Tx Rx multiplexer is required to combine the Arduino's Tx1 And Rx1 pins onto the blue wire.
- a Tx Enable signal from pin 20 controls the multiplexer
- Serial logging software on Serial0 via USB link
2018-09-23 08:59:19 +00:00
created 23 Sep 2018 by Ray Jones
This example code is in the public domain.
*/
2018-09-23 08:59:19 +00:00
#include "Protocol.h"
#include "TxManage.h"
#include "pins.h"
#define BLUETOOTH
#ifdef BLUETOOTH
#include "Bluetooth.h"
#endif
#if defined(__arm__)
// for Arduino Due
static UARTClass& BlueWire(Serial1);
#else
// for ESP32, Mega
static HardwareSerial& BlueWire(Serial1);
#endif
void SerialReport(const char* hdr, const unsigned char* pData, const char* ftr);
class CommStates {
public:
2018-09-23 08:59:19 +00:00
// comms states
enum eCS {
Idle, ControllerRx, ControllerReport, HeaterRx1, HeaterReport1, BTC_Tx, HeaterRx2, HeaterReport2
};
CommStates() {
set(Idle);
}
void set(eCS eState) {
m_State = eState;
m_Count = 0;
}
bool is(eCS eState) {
return m_State == eState;
}
2018-09-23 08:59:19 +00:00
bool saveData(unsigned char* pData, unsigned char val, int limit = 24) { // returns true when buffer filled
pData[m_Count++] = val;
return m_Count == limit;
}
private:
int m_State;
int m_Count;
};
CommStates CommState;
CTxManage TxManage(TxEnbPin, Serial1);
CProtocol OEMController; // most recent data packet received from OEM controller found on blue wire
2018-09-23 09:15:49 +00:00
CProtocol Heater1; // data packet received from heater in response to OEM controller packet
CProtocol Heater2; // data packet received from heater in response to our packet
CProtocol BTCParams(CProtocol::CtrlMode); // holds our local parameters, used in case of no OEM controller
2018-09-23 08:59:19 +00:00
long lastRxTime; // used to observe inter character delays
void setup()
{
// initialize listening serial port
// 25000 baud, Tx and Rx channels of Chinese heater comms interface:
// Tx/Rx data to/from heater, special baud rate for Chinese heater controllers
pinMode(ListenOnlyPin, INPUT_PULLUP);
pinMode(KeyPin, OUTPUT);
// pinMode(Tx2Pin, OUTPUT);
digitalWrite(KeyPin, LOW);
// digitalWrite(Tx2Pin, HIGH);
#if defined(__arm__) || defined(__AVR__)
2018-09-23 08:59:19 +00:00
BlueWire.begin(25000);
pinMode(Rx1Pin, INPUT_PULLUP); // required for MUX to work properly
#else if defined(__ESP32__)
// ESP32
BlueWire.begin(25000, SERIAL_8N1, Rx1Pin, Tx1Pin);
pinMode(Rx1Pin, INPUT_PULLUP); // required for MUX to work properly
#endif
// initialise serial monitor on serial port 0
2018-09-23 08:59:19 +00:00
USB.begin(115200);
// prepare for first long delay detection
lastRxTime = millis();
2018-09-23 08:59:19 +00:00
TxManage.begin(); // ensure Tx enable pin setup
// define defaults should heater controller be missing
BTCParams.setTemperature_Desired(23);
BTCParams.setTemperature_Actual(22);
BTCParams.Controller.OperatingVoltage = 120;
BTCParams.setPump_Min(16);
BTCParams.setPump_Max(55);
BTCParams.setFan_Min(1680);
BTCParams.setFan_Max(4500);
#ifdef BLUETOOTH
Bluetooth_Init();
#endif
}
void loop()
{
unsigned long timenow = millis();
// check for test commands received from PC Over USB
2018-09-23 08:59:19 +00:00
if(USB.available()) {
char rxval = USB.read();
if(rxval == '+') {
TxManage.RequestOn();
}
if(rxval == '-') {
TxManage.RequestOff();
}
}
#ifdef BLUETOOTH
// check for Bluetooth activity
Bluetooth_Check();
#endif
2018-09-23 08:59:19 +00:00
// Handle time interval where we send data to the blue wire
if(CommState.is(CommStates::BTC_Tx)) {
2018-09-23 08:59:19 +00:00
lastRxTime = timenow; // we are pumping onto blue wire, track this activity!
if(TxManage.CheckTx(timenow) ) { // monitor our data delivery
CommState.set(CommStates::HeaterRx2); // then await heater repsonse
}
}
// calc elapsed time since last rxd byte to detect no other controller, or start of frame sequence
unsigned long RxTimeElapsed = timenow - lastRxTime;
// check for no rx traffic => no OEM controller
if(CommState.is(CommStates::Idle) && (RxTimeElapsed >= 970)) {
// have not seen any receive data for a second.
// OEM controller probably not connected.
// Skip to BTC_Tx, sending our own settings.
CommState.set(CommStates::BTC_Tx);
2018-09-23 08:59:19 +00:00
bool bOurParams = true;
TxManage.Start(BTCParams, timenow, bOurParams);
#ifdef BLUETOOTH
Bluetooth_Report("[BTC]", BTCParams.Data); // BTC => Bluetooth Controller :-)
#endif
}
// precautionary action if all 24 bytes were not received whilst expecting them
if(RxTimeElapsed > 50) {
2018-09-23 08:59:19 +00:00
if( CommState.is(CommStates::ControllerRx) ||
CommState.is(CommStates::HeaterRx1) ||
CommState.is(CommStates::HeaterRx2) ) {
CommState.set(CommStates::Idle);
}
}
// read from port 1, the "blue wire" (to/from heater), store according to CommState
2018-09-23 08:59:19 +00:00
if (BlueWire.available()) {
lastRxTime = timenow;
2018-09-23 08:59:19 +00:00
// detect start of a new frame sequence from OEM controller
if( CommState.is(CommStates::Idle) && (RxTimeElapsed > 100)) {
CommState.set(CommStates::ControllerRx);
}
2018-09-23 08:59:19 +00:00
int inByte = BlueWire.read(); // read hex byte
2018-09-23 08:59:19 +00:00
if( CommState.is(CommStates::ControllerRx) ) {
if(CommState.saveData(OEMController.Data, inByte) ) {
2018-09-23 08:59:19 +00:00
CommState.set(CommStates::ControllerReport);
}
}
2018-09-23 08:59:19 +00:00
else if( CommState.is(CommStates::HeaterRx1) ) {
if( CommState.saveData(Heater1.Data, inByte) ) {
CommState.set(CommStates::HeaterReport1);
}
}
2018-09-23 08:59:19 +00:00
else if( CommState.is(CommStates::HeaterRx2) ) {
if( CommState.saveData(Heater2.Data, inByte) ) {
CommState.set(CommStates::HeaterReport2);
}
}
2018-09-23 08:59:19 +00:00
} // BlueWire.available
2018-09-23 08:59:19 +00:00
if( CommState.is(CommStates::ControllerReport) ) {
// filled controller frame, report
#ifdef BLUETOOTH
Bluetooth_Report("[OEM]", OEMController.Data);
#endif
SerialReport("Ctrl ", OEMController.Data, " ");
2018-09-23 08:59:19 +00:00
CommState.set(CommStates::HeaterRx1);
}
2018-09-23 08:59:19 +00:00
else if(CommState.is(CommStates::HeaterReport1) ) {
// received heater frame (after controller message), report
SerialReport("Htr1 ", Heater1.Data, "\r\n");
#ifdef BLUETOOTH
Bluetooth_Report("[HTR]", Heater1.Data);
#endif
if(digitalRead(ListenOnlyPin)) {
bool bOurParams = false;
TxManage.Start(OEMController, timenow, bOurParams);
CommState.set(CommStates::BTC_Tx);
}
else {
CommState.set(CommStates::Idle); // "Listen Only" input held low, don't send out Tx
}
}
2018-09-23 08:59:19 +00:00
else if( CommState.is(CommStates::HeaterReport2) ) {
// received heater frame (after our control message), report
SerialReport("Htr2 ", Heater2.Data, "\r\n");
// if(!digitalRead(ListenOnlyPin)) {
#ifdef BLUETOOTH
Bluetooth_Report("[HTR]", Heater2.Data); // pin not grounded, suppress duplicate to BT
#endif
// }
CommState.set(CommStates::Idle);
}
} // loop
void SerialReport(const char* hdr, const unsigned char* pData, const char* ftr)
{
2018-09-23 08:59:19 +00:00
USB.print(hdr); // header
for(int i=0; i<24; i++) {
char str[16];
2018-09-23 08:59:19 +00:00
sprintf(str, "%02X ", pData[i]); // build 2 dig hex values
USB.print(str); // and print
}
2018-09-23 08:59:19 +00:00
USB.print(ftr); // footer
}